IDEAS home Printed from https://ideas.repec.org/e/c/pti63.html
   My authors  Follow this author

Govinda R. Timilsina

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Blog mentions

As found by EconAcademics.org, the blog aggregator for Economics research:
  1. Timilsina, Govinda R. & Beghin, John C. & van der Mensbrugghe, Dominique & Mevel, Simon, 2010. "The impacts of biofuel targets on land-use change and food supply : a global CGE assessment," Policy Research Working Paper Series 5513, The World Bank.

    Mentioned in:

    1. Impacts of Biofuel Targets on Land-Use Change and Food Supply
      by John Wihbey in Journalist's Resource on 2011-04-07 23:47:27
  2. Timilsina,Govinda R. & Stern,David S. & Das,Debasish Kumar, 2021. "How Much Does Physical Infrastructure Contribute to Economic Growth ? An Empirical Analysis," Policy Research Working Paper Series 9888, The World Bank.

    Mentioned in:

    1. Annual Review 2022
      by noreply@blogger.com (David Stern) in Stochastic Trend on 2022-12-18 02:45:00

Working papers

  1. Timilsina,Govinda R. & Deluque Curiel,Ilka Fabiana & Chattopadhyay,Debabrata, 2021. "How Much Does Latin America Gain from Enhanced Cross-Border Electricity Trade in the Short Run ?," Policy Research Working Paper Series 9692, The World Bank.

    Cited by:

    1. Nepal, Rabindra & Sofe, Ronald & Jamasb, Tooraj, 2022. "Independent Power Producers and Deregulation in an Island Based Small Electricity System: The Case of Papua New Guinea," Working Papers 14-2022, Copenhagen Business School, Department of Economics.

  2. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.

    Cited by:

    1. Henry, Candise L. & Baker, Justin S. & Shaw, Brooke K. & Kondash, Andrew J. & Leiva, Benjamín & Castellanos, Edwin & Wade, Christopher M. & Lord, Benjamin & Van Houtven, George & Redmon, Jennifer Hopo, 2021. "How will renewable energy development goals affect energy poverty in Guatemala?," Energy Economics, Elsevier, vol. 104(C).
    2. Timilsina,Govinda R., 2021. "Economics of Distributed Photovoltaics : An Illustration from Bangladesh," Policy Research Working Paper Series 9699, The World Bank.
    3. Karbassi, Veis & Trotter, Philipp A. & Walther, Grit, 2023. "Diversifying the African energy system: Economic versus equitable allocation of renewable electricity and e-fuel production," Applied Energy, Elsevier, vol. 350(C).
    4. Elkadeem, Mohamed R. & Younes, Ali & Mazzeo, Domenico & Jurasz, Jakub & Elia Campana, Pietro & Sharshir, Swellam W. & Alaam, Mohamed A., 2022. "Geospatial-assisted multi-criterion analysis of solar and wind power geographical-technical-economic potential assessment," Applied Energy, Elsevier, vol. 322(C).
    5. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    6. Shigeru Kimura & Keisuke Ueda (ed.), 2021. "Feasibility Study on the Transmission Highway in ACMECS," Books, Economic Research Institute for ASEAN and East Asia (ERIA), number 2021-RPR-17, July.
    7. Qudrat-Ullah, Hassan, 2022. "A review and analysis of renewable energy policies and CO2 emissions of Pakistan," Energy, Elsevier, vol. 238(PB).

  3. Timilsina,Govinda R. & Hochman,Gal & Song,Ze, 2020. "Infrastructure, Economic Growth, and Poverty : A Review," Policy Research Working Paper Series 9258, The World Bank.

    Cited by:

    1. Yan Xin & Dongchuan Wang & Lihui Zhang & Yingyi Ma & Xing Chen & Haiqing Wang & Hongyi Wang & Kangjian Wang & Hui Long & Hua Chai & Jianshe Gao, 2022. "Cooperative analysis of infrastructure perfection and residents’ living standards in poverty-stricken counties in Qinghai Province," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3687-3703, March.
    2. Alma Mačiulytė-Šniukienė & Mindaugas Butkus & Renata Macaitienė & Vida Davidavičienė, 2022. "Infrastructure and EU Regional Convergence: What Policy Implications Does Non-Linearity Bring?," Mathematics, MDPI, vol. 11(1), pages 1-22, December.
    3. Júlio Vicente Cateia & Maurício Vaz Lobo Bittencourt & Terciane Sabadini Carvalho & Luc Savard, 2023. "Funding schemes for infrastructure investment and poverty alleviation in Africa: Evidence from Guinea‐Bissau," Journal of International Development, John Wiley & Sons, Ltd., vol. 35(6), pages 1505-1529, August.
    4. David Suárez-Cuesta & Maria C. Latorre, 2023. "Modeling the Impact of Public Infrastructure investments in the U.S.: A CGE Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 29(3), pages 165-176, August.
    5. Montrone, Lorenzo & Steckel, Jan Christoph & Kalkuhl, Matthias, 2022. "The type of power capacity matters for economic development – Evidence from a global panel," Resource and Energy Economics, Elsevier, vol. 69(C).
    6. Timilsina,Govinda R. & Stern,David S. & Das,Debasish Kumar, 2021. "How Much Does Physical Infrastructure Contribute to Economic Growth ? An Empirical Analysis," Policy Research Working Paper Series 9888, The World Bank.
    7. Sedef Sen & Tugba Yilmaz, 2023. "An Econometric Analysis on the Relationship between Infrastructure and Economic Growth," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 10(2), pages 361-393, July.
    8. Hongzhang Xu & Jamie Pittock & Katherine A. Daniell, 2021. "China: A New Trajectory Prioritizing Rural Rather Than Urban Development?," Land, MDPI, vol. 10(5), pages 1-29, May.

  4. Alberini,Anna & Steinbuks,Jevgenijs & Timilsina,Govinda R., 2020. "How Valuable is the Reliability of Residential Electricity Supply in Low-Income Countries ? Evidence from Nepal," Policy Research Working Paper Series 9311, The World Bank.

    Cited by:

    1. Meeks, Robyn C. & Omuraliev, Arstan & Isaev, Ruslan & Wang, Zhenxuan, 2023. "Impacts of electricity quality improvements: Experimental evidence on infrastructure investments," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    2. Hashemi, Majid & Jenkins, Glenn, 2022. "Can privatization of distribution substations improve electricity reliability for non-residential customers? An application to Nepal," Utilities Policy, Elsevier, vol. 74(C).
    3. Timilsina, Govinda & Steinbuks, Jevgenijs, 2021. "Economic costs of electricity load shedding in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Majid Hashemi, 2021. "The Effect of Reliability Improvements on Household Electricity Consumption and Coping Behavior: A Multi-dimensional Approach," Working Paper 1469, Economics Department, Queen's University.
    5. Majid Hashemi & Glenn Jenkins, 2021. "The Economic Benefits of Mitigating the Risk of Unplanned Power Outages," Working Paper 1468, Economics Department, Queen's University.

  5. Timilsina,Govinda R. & Deluque Curiel,Ilka Fabiana, 2020. "Power System Implications of Subsidy Removal, Regional Electricity Trade, and Carbon Constraints in MENA Economies," Policy Research Working Paper Series 9297, The World Bank.

    Cited by:

    1. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    2. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.

  6. Timilsina,Govinda R. & Pang,Jun & Yang,Xi, 2019. "How Much Would China Gain from Power Sector Reforms ? An Analysis Using TIMES and CGE Models," Policy Research Working Paper Series 8908, The World Bank.

    Cited by:

    1. Timilsina, Govinda R. & Pang, Jun & Yang, Xi, 2021. "Macroeconomic impacts of power sector reforms in China," Energy Policy, Elsevier, vol. 157(C).
    2. Cao, Jing & Dai, Hancheng & Li, Shantong & Guo, Chaoyi & Ho, Mun & Cai, Wenjia & He, Jianwu & Huang, Hai & Li, Jifeng & Liu, Yu & Qian, Haoqi & Wang, Can & Wu, Libo & Zhang, Xiliang, 2021. "The general equilibrium impacts of carbon tax policy in China: A multi-model comparison," Energy Economics, Elsevier, vol. 99(C).

  7. Pang,Jun & Timilsina,Govinda R., 2019. "Implications for Provincial Economies of Meeting China's NDC through an Emission Trading Scheme : A Regional CGE Modeling Analysis," Policy Research Working Paper Series 8909, The World Bank.

    Cited by:

    1. Pang, Jun & Timilsina, Govinda, 2021. "How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

  8. Grzegorz Peszko & Simon Black & Alexandrina Platonova-Oquab & Dirk Heine & Govinda Timilsina, 2019. "Environmental Fiscal Reform in Morocco," World Bank Publications - Reports 34030, The World Bank Group.

    Cited by:

    1. Firdaous El Ghazi & Moulay Brahim Sedra & Mahmoud Akdi, 2021. "Electricity Development and Opportunities to Reduce Carbon Dioxide Emissions in Morocco," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 149-156.

  9. Timilsina,Govinda R. & Pang,Jun & Yang,Xi, 2019. "Linking Top-Down and Bottom-UP Models for Climate Policy Analysis : The Case of China," Policy Research Working Paper Series 8905, The World Bank.

    Cited by:

    1. Chang, Miguel & Lund, Henrik & Thellufsen, Jakob Zinck & Østergaard, Poul Alberg, 2023. "Perspectives on purpose-driven coupling of energy system models," Energy, Elsevier, vol. 265(C).
    2. Timilsina, Govind R. & Pang, Jun & Xi, Yang, 2021. "Enhancing the quality of climate policy analysis in China: Linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Pang, Jun & Timilsina, Govinda, 2021. "How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Timilsina, Govinda R. & Pang, Jun & Yang, Xi, 2021. "Macroeconomic impacts of power sector reforms in China," Energy Policy, Elsevier, vol. 157(C).
    5. Anna Flessa & Dimitris Fragkiadakis & Eleftheria Zisarou & Panagiotis Fragkos, 2023. "Developing an Integrated Energy–Economy Model Framework for Islands," Energies, MDPI, vol. 16(3), pages 1-32, January.

  10. Dong,Kangyin & Hochman,Gal & Timilsina,Govinda R., 2018. "Are driving forces of CO2 emissions different across countries? : insights from identity and econometric analyses," Policy Research Working Paper Series 8477, The World Bank.

    Cited by:

    1. Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "Towards green recovery: Platform economy and its impact on carbon emissions in China," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 969-987.
    2. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    3. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    4. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.

  11. Timilsina,Govinda R. & Pargal,Sheoli & Tsigas,Marinos E. & Sahin,Sebnem, 2018. "How Much Would Bangladesh Gain from the Removal of Subsidies on Electricity and Natural Gas ?," Policy Research Working Paper Series 8677, The World Bank.

    Cited by:

    1. Timilsina, Govinda R. & Pargal, Sheoli, 2020. "Economics of energy subsidy reforms in Bangladesh," Energy Policy, Elsevier, vol. 142(C).
    2. Asif Reza Anik & Sanzidur Rahman, 2021. "Commercial Energy Demand Forecasting in Bangladesh," Energies, MDPI, vol. 14(19), pages 1-22, October.

  12. Timilsina,Govinda R., 2018. "How would cross-border electricity trade stimulate hydropower development in South Asia ?," Policy Research Working Paper Series 8513, The World Bank.

    Cited by:

    1. Haque, H.M. Enamul & Dhakal, Shobhakar & Mostafa, S.M.G., 2020. "An assessment of opportunities and challenges for cross-border electricity trade for Bangladesh using SWOT-AHP approach," Energy Policy, Elsevier, vol. 137(C).
    2. Nepal, Rabindra & Paija, Nirash, 2019. "Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy," Energy Policy, Elsevier, vol. 132(C), pages 771-781.

  13. Timilsina,Govinda R., 2018. "Where is the carbon tax after thirty years of research ?," Policy Research Working Paper Series 84893, The World Bank.

    Cited by:

    1. Janet J. McIntyre-Mills & Mphatheleni Makaulule & Patricia Lethole & E. Pitsoane & Akwasi Arko-Achemfuor & Rudolf Wirawan & Ida Widianingsih, 2023. "Ecocentric Living: A Way Forward Towards Zero Carbon: A Conversation about Indigenous Law and Leadership Based on Custodianship and Praxis," Systemic Practice and Action Research, Springer, vol. 36(2), pages 275-319, April.
    2. Bartosz Jóźwik & Antonina Gavryshkiv, 2022. "Wpływ podatku środowiskowego na emisję gazów cieplarnianych w państwach Grupy Wyszehradzkiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 1, pages 66-78.
    3. Maria Alice Moz-Christofoletti & Paula Carvalho Pereda, 2021. "Winners and losers: the distributional impact of a carbon tax in Brazil," Working Papers, Department of Economics 2021_08, University of São Paulo (FEA-USP).
    4. Grottera, Carolina & Naspolini, Giovanna Ferrazzo & La Rovere, Emilio Lèbre & Schmitz Gonçalves, Daniel Neves & Nogueira, Tainan de Farias & Hebeda, Otto & Dubeux, Carolina Burle Schmidt & Goes, Georg, 2022. "Energy policy implications of carbon pricing scenarios for the Brazilian NDC implementation," Energy Policy, Elsevier, vol. 160(C).
    5. William Wills & Emilio Lebre La Rovere & Carolina Grottera & Giovanna Ferrazzo Naspolini & Gaëlle Le Treut & F. Ghersi & Julien Lefèvre & Carolina Burle Schmidt Dubeux, 2022. "Economic and social effectiveness of carbon pricing schemes to meet Brazilian NDC targets," Post-Print hal-03500923, HAL.
    6. Carolina Grottera & Giovanna Ferrazzo Naspolini & Emilio Lèbre La Rovere & Daniel Neves Schmitz Gonçalves & Tainan de Farias Nogueira & Otto Hebeda & Carolina Burle Schmidt Dubeux & George Vasconcelos, 2022. "Energy policy implications of carbon pricing scenarios for the Brazilian NDC implementation," Post-Print hal-03791419, HAL.
    7. Lokuge, Nimanthika & Anders, Sven, 2022. "Carbon-Credit Systems in Agriculture: A Review of Literature," SPP Technical Papers, The School of Public Policy, University of Calgary, vol. 15(12), April.

  14. Timilsina,Govinda R. & Sapkota,Prakash Raj & Steinbuks,Jevgenijs, 2018. "How much has Nepal lost in the last decade due to load shedding? an economic assessment using a CGE model," Policy Research Working Paper Series 8468, The World Bank.

    Cited by:

    1. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    2. Koirala, Dhiroj Prasad & Acharya, Bikram, 2022. "Households’ fuel choices in the context of a decade-long load-shedding problem in Nepal," Energy Policy, Elsevier, vol. 162(C).
    3. Timilsina, Govinda & Steinbuks, Jevgenijs, 2021. "Economic costs of electricity load shedding in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    4. Nepal, Rabindra & Paija, Nirash, 2019. "Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy," Energy Policy, Elsevier, vol. 132(C), pages 771-781.
    5. Timilsina,Govinda R. & Hochman,Gal & Song,Ze, 2020. "Infrastructure, Economic Growth, and Poverty : A Review," Policy Research Working Paper Series 9258, The World Bank.
    6. Hashemi, Majid, 2021. "The economic value of unsupplied electricity: Evidence from Nepal," Energy Economics, Elsevier, vol. 95(C).
    7. Zubair, Muhammad & Awan, Ahmed Bilal & Rehman, Muhammad Muqeet & Khan, Mohammad Nadeem & Abbas, Ghulam, 2021. "Residential and commercial UPS User's contribution to load shedding and possible solutions using renewable energy," Energy Policy, Elsevier, vol. 151(C).
    8. Shakya, S.R. & Adhikari, R. & Poudel, S. & Rupakheti, M., 2022. "Energy equity as a major driver of energy intensity in South Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Aryal, Sushil & Dhakal, Shobhakar, 2022. "Medium-term assessment of cross border trading potential of Nepal's renewable energy using TIMES energy system optimization platform," Energy Policy, Elsevier, vol. 168(C).
    10. Timilsina, Govinda & Steinbuks, Jevgenijs & Sapkota, Prakash, 2019. "Economy-wide Cost of Electricity Load Shedding in Nepal," Conference papers 333038, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

  15. Fan,Ying & Wu,Jie & Timilsina,Govinda R. & Xia,Yan, 2017. "Understanding the interactions between emissions trading systems and renewable energy standards using a multi-regional CGE model of China," Policy Research Working Paper Series 8159, The World Bank.

    Cited by:

    1. Corradini, Massimiliano & Costantini, Valeria & Markandya, Anil & Paglialunga, Elena & Sforna, Giorgia, 2018. "A dynamic assessment of instrument interaction and timing alternatives in the EU low-carbon policy mix design," Energy Policy, Elsevier, vol. 120(C), pages 73-84.
    2. Wu, Jie & Fan, Ying & Timilsina, Govinda & Xia, Yan, 2022. "Exploiting Complementarity of Carbon Pricing Instruments for Low-Carbon Development in the People’s Republic of China," ADBI Working Papers 1329, Asian Development Bank Institute.
    3. Massimiliano Corradini & Valeria Costantini & Anil Markandya & Elena Paglialunga & Giorgia Sforna, 2018. "Some reflections on policy mix in the EU low-carbon strategy," Departmental Working Papers of Economics - University 'Roma Tre' 0236, Department of Economics - University Roma Tre.

  16. Malla,Sunil & Timilsina,Govinda R., 2016. "Long-term energy demand forecasting in Romania : an end-use demand," Policy Research Working Paper Series 7697, The World Bank.

    Cited by:

    1. Jacek Brożyna & Grzegorz Mentel & Eva Ivanová & Gennadii Sorokin, 2019. "Classification of Renewable Sources of Electricity in the Context of Sustainable Development of the New EU Member States," Energies, MDPI, vol. 12(12), pages 1-22, June.

  17. Cao,Jing & Ho,Mun-Sing & Timilsina,Govinda R., 2016. "Impacts of carbon pricing in reducing the carbon intensity of China's GDP," Policy Research Working Paper Series 7735, The World Bank.

    Cited by:

    1. agarwal, shekhar & Dutta, Madhurima & Dutta, Ritvik & Krishna, Vijesh, 2022. "Leveraging Artificial Intelligence in the Cyber Workplace: Prospects and Limitations for the Cyber Economy," Thesis Commons 4yr8j, Center for Open Science.
    2. Zhang, Xiaohan & Winchester, Niven & Zhang, Xiliang, 2017. "The future of coal in China," Energy Policy, Elsevier, vol. 110(C), pages 644-652.
    3. Wu, Qingyang & Tan, Chang & Wang, Daoping & Wu, Yongtao & Meng, Jing & Zheng, Heran, 2023. "How carbon emission prices accelerate net zero: Evidence from China's coal-fired power plants," Energy Policy, Elsevier, vol. 177(C).
    4. agarwal, shekhar & Gordon, Anna, 2022. "Complexities for the Indian Economy of China's Growing Technological Competence," OSF Preprints fk3r7, Center for Open Science.
    5. Huang, Xiaodan & Chang, Shiyan & Zheng, Dingqian & Zhang, Xiliang, 2020. "The role of BECCS in deep decarbonization of China's economy: A computable general equilibrium analysis," Energy Economics, Elsevier, vol. 92(C).

  18. Timilsina,Govinda R. & Sikharulidze,Anna & Karapoghosyan,Eduard & Shatvoryan,Suren, 2016. "How do we prioritize the GHG mitigation options ? development of a marginal abatement cost curve for the building sector in Armenia and Georgia," Policy Research Working Paper Series 7703, The World Bank.

    Cited by:

    1. Alexey Mikhaylov & Nikita Moiseev & Kirill Aleshin & Thomas Burkhardt, 2020. "Global climate change and greenhouse effect," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(4), pages 2897-2913, June.

  19. Landis,Florian & Timilsina,Govinda R., 2015. "The economics of policy instruments to stimulate wind power in Brazil," Policy Research Working Paper Series 7346, The World Bank.

    Cited by:

    1. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.

  20. Timilsina,Govinda R. & Tiwari,Ujjal, 2015. "The economic viability of jatropha biodiesel in Nepal," Policy Research Working Paper Series 7295, The World Bank.

    Cited by:

    1. Sahar Safarian & Sorena Sattari & Zeinab Hamidzadeh, 2018. "Sustainability Assessment of Biodiesel Supply Chain from Various Biomasses and Conversion Technologies," Biophysical Economics and Resource Quality, Springer, vol. 3(2), pages 1-15, June.
    2. Hasan, Atiye Haj & Avami, Akram, 2018. "Water and emissions nexus for biodiesel in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 354-363.

  21. Timilsina,Govinda R. & Toman,Michael A. & Karacsonyi,Jorge G. & de Tena Diego,Luca, 2015. "How much could South Asia benefit from regional electricity cooperation and trade ?," Policy Research Working Paper Series 7341, The World Bank.

    Cited by:

    1. Nikandrova, Arina & Steinbuks, Jevgenijs, 2014. "Contracting for the second best in dysfunctional electricity markets," Policy Research Working Paper Series 6955, The World Bank.
    2. Anupama Sen & Rabindra Nepal & Tooraj Jamasb, 2016. "Rethinking Electricity Sector Reform in Developing Asia: Balancing Economic and Environmental Objectives," Discussion Papers Series 572, School of Economics, University of Queensland, Australia.
    3. Sadiqa, Ayesha & Gulagi, Ashish & Breyer, Christian, 2018. "Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050," Energy, Elsevier, vol. 147(C), pages 518-533.
    4. United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) South and South-West (ed.), 2018. "Achieving the Sustainable Development Goals in South Asia: Key Policy Priorities and Implementation Challenges," SSWA Books and Research Reports, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP) South and South-West Asia Office, number brr5, May.
    5. Vorisek,Dana Lauren & Yu,Shu, 2020. "Understanding the Cost of Achieving the Sustainable Development Goals," Policy Research Working Paper Series 9164, The World Bank.
    6. Das, Anjana & Halder, Arideep & Mazumder, Rahul & Saini, Vinay Kumar & Parikh, Jyoti & Parikh, Kirit S., 2018. "Bangladesh power supply scenarios on renewables and electricity import," Energy, Elsevier, vol. 155(C), pages 651-667.
    7. Singh,Anoop & Jamasb,Tooraj & Nepal,Rabindra & Toman,Michael A., 2015. "Cross-border electricity cooperation in South Asia," Policy Research Working Paper Series 7328, The World Bank.

  22. Jamasb,Tooraj & Nepal,Rabindra & Timilsina,Govinda R., 2015. "A quarter century effort yet to come of age : a survey of power sector reforms in developing countries," Policy Research Working Paper Series 7330, The World Bank.

    Cited by:

    1. Bhatt, Brijesh & Singh, Anoop, 2021. "Power sector reforms and technology adoption in the Indian electricity distribution sector," Energy, Elsevier, vol. 215(PA).
    2. Mahmud I Imam & Tooraj Jamasb & Manuel Llorca, 2019. "Political Economy of Reform and Regulation in the Electricity Sector of Sub-Saharan Africa," Working Papers EPRG1917, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    3. Nepal, Rabindra & Foster, John, 2015. "Electricity networks privatization in Australia: An overview of the debate," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 12-24.
    4. Qazi, Usama & Jahanzaib, Mirza & Ahmad, Wasim & Hussain, Salman, 2017. "An institutional framework for the development of sustainable and competitive power market in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 83-95.
    5. Anupama Sen & Rabindra Nepal & Tooraj Jamasb, 2016. "Rethinking Electricity Sector Reform in Developing Asia: Balancing Economic and Environmental Objectives," Discussion Papers Series 572, School of Economics, University of Queensland, Australia.
    6. Duncan Chaplin & Arif Mamun & Ali Protik & John Schurrer & Divya Vohra & Kristine Bos & Hannah Burak & Laura Meyer & Anca Dumitrescu & Christopher Ksoll & Thomas Cook, "undated". "Grid Electricity Expansion in Tanzania by MCC: Findings from a Rigorous Impact Evaluation, Final Report," Mathematica Policy Research Reports 144768f69008442e96369195e, Mathematica Policy Research.
    7. Asantewaa, Adwoa & Jamasb, Tooraj & Llorca, Manuel, 2020. "Electricity Sector Reform Performance in Sub-Saharan Africa: A Parametric Distance Function Approach," Working Papers 14-2020, Copenhagen Business School, Department of Economics.
    8. Li, Hong-Zhou & Kopsakangas-Savolainen, Maria & Xiao, Xing-Zhi & Lau, Sim-Yee, 2017. "Have regulatory reforms improved the efficiency levels of the Japanese electricity distribution sector? A cost metafrontier-based analysis," Energy Policy, Elsevier, vol. 108(C), pages 606-616.
    9. Tatiana Didier & M. Ayhan Kose & Franziska Ohnsorge & Lei Sandy Ye, 2015. "Slowdown in Emerging Markets: Rough Patch or Prolonged Weakness?," Koç University-TUSIAD Economic Research Forum Working Papers 1529, Koc University-TUSIAD Economic Research Forum.
    10. Dertinger, Andrea & Hirth, Lion, 2019. "Reforming the Electric Power Industry in Developing Economies," EconStor Preprints 201842, ZBW - Leibniz Information Centre for Economics.
    11. Arowolo, Wale & Perez, Yannick, 2020. "Market reform in the Nigeria power sector: A review of the issues and potential solutions," Energy Policy, Elsevier, vol. 144(C).
    12. Duncan Chaplin & Delia Welsh & Arif Mamun & Nick Ingwersen & Kristine Bos & Erin Crossett & Poonam Ravindranath & Dara Bernstein & William Derbyshire, "undated". "Ghana Power Compact: Evaluation Design Report," Mathematica Policy Research Reports 8c1896c6f9af45f08347287c1, Mathematica Policy Research.
    13. Kathuria, Vinish, 2021. "Impact of institutional reforms on the performance of distribution utilities in India – A dynamic panel data analysis," Energy Policy, Elsevier, vol. 158(C).

  23. Timilsina, Govinda R. & Landis, Florian, 2014. "Economics of transiting to renewable energy in Morocco : a general equilibrium analysis," Policy Research Working Paper Series 6940, The World Bank.

    Cited by:

    1. Wu, Jie & Albrecht, Johan & Fan, Ying & Xia, Yan, 2016. "The design of renewable support schemes and CO2 emissions in China," Energy Policy, Elsevier, vol. 99(C), pages 4-11.
    2. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    3. Landis,Florian & Timilsina,Govinda R., 2015. "The economics of policy instruments to stimulate wind power in Brazil," Policy Research Working Paper Series 7346, The World Bank.
    4. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.

  24. Malla, Sunil & Timilsina, Govinda R, 2014. "Household cooking fuel choice and adoption of improved cookstoves in developing countries : a review," Policy Research Working Paper Series 6903, The World Bank.

    Cited by:

    1. Aziz, Shakila & Barua, Suborna & Chowdhury, Shahriar Ahmed, 2022. "Cooking energy use in Bangladesh: Evidence from technology and fuel choice," Energy, Elsevier, vol. 250(C).
    2. Mills, Evan, 2017. "Global Kerosene Subsidies: An Obstacle to Energy Efficiency and Development," World Development, Elsevier, vol. 99(C), pages 463-480.
    3. Khandelwal, Meena & Hill, Matthew E. & Greenough, Paul & Anthony, Jerry & Quill, Misha & Linderman, Marc & Udaykumar, H.S., 2017. "Why Have Improved Cook-Stove Initiatives in India Failed?," World Development, Elsevier, vol. 92(C), pages 13-27.
    4. Evita Hanie Pangaribowo & Deden Dinar Iskandar, 2023. "Exploring socio-economic determinants of energy choices for cooking: the case of eastern Indonesian households," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 7135-7148, July.
    5. Martin Beer & Radim Rybár & Jana Rybárová & Andrea Seňová & Vojtech Ferencz, 2021. "Numerical Analysis of Concentrated Solar Heaters for Segmented Heat Accumulators," Energies, MDPI, vol. 14(14), pages 1-20, July.
    6. Alem, Yonas, 2021. "Mitigating climate change through sustainable technology adoption: Insights from cookstove interventions," Ruhr Economic Papers 907, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Muller, Christophe & Yan, Huijie, 2018. "Household fuel use in developing countries: Review of theory and evidence," Energy Economics, Elsevier, vol. 70(C), pages 429-439.
    8. Lalisa Duguma & Esther Kamwilu & Peter A Minang & Judith Nzyoka & Kennedy Muthee, 2020. "Ecosystem-Based Approaches to Bioenergy and the Need for Regenerative Supply Options for Africa," Sustainability, MDPI, vol. 12(20), pages 1-22, October.
    9. Sagbo, Nicaise S. M. & Kusunose, Yoko, 2014. "The impact of improved clean cookstoves on households in Southern Haiti," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196881, Southern Agricultural Economics Association.
    10. Guzmán, Juan Carlos & Khatiwada, Lila Kumar & Guzmán, Danice Brown, 2020. "Improved cookstoves as a pathway between food preparation and reduced domestic violence in Uganda," World Development Perspectives, Elsevier, vol. 18(C).
    11. Yohannes Biru Aemro & Pedro Moura & Aníbal T. Almeida, 2021. "Inefficient cooking systems a challenge for sustainable development: a case of rural areas of Sub-Saharan Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14697-14721, October.
    12. Zubi, Ghassan & Fracastoro, Gian Vincenzo & Lujano-Rojas, Juan M. & El Bakari, Khalil & Andrews, David, 2019. "The unlocked potential of solar home systems; an effective way to overcome domestic energy poverty in developing regions," Renewable Energy, Elsevier, vol. 132(C), pages 1425-1435.
    13. Nigel Scott & Jerome Nsengiyaremye & Jacob Fodio Todd & Jon Leary, 2023. "Cooking Fuel Choice and Wellbeing: A Global Perspective," Energies, MDPI, vol. 16(18), pages 1-22, September.
    14. Frank Adusah-Poku & Samuel Adams & Kwame Adjei-Mantey, 2023. "Does the gender of the household head affect household energy choice in Ghana? An empirical analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6049-6070, July.
    15. Cundale, Katie & Thomas, Ranjeeta & Malava, Jullita Kenala & Havens, Deborah & Mortimer, Kevin & Conteh, Lesong, 2017. "A health intervention or a kitchen appliance? Household costs and benefits of a cleaner burning biomass-fuelled cookstove in Malawi," Social Science & Medicine, Elsevier, vol. 183(C), pages 1-10.
    16. Karanja, Alice & Gasparatos, Alexandros, 2019. "Adoption and impacts of clean bioenergy cookstoves in Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 285-306.
    17. Zheng, Linyi, 2023. "Impact of off-farm employment on cooking fuel choices: Implications for rural-urban transformation in advancing sustainable energy transformation," Energy Economics, Elsevier, vol. 118(C).
    18. McLean, Elena V. & Bagchi-Sen, Sharmistha & Atkinson, John D. & Ravenscroft, Julia & Hewner, Sharon & Schindel, Alexandra, 2019. "Country-level analysis of household fuel transitions," World Development, Elsevier, vol. 114(C), pages 267-280.
    19. Niu, Shuwen & Li, Zhen & Qiu, Xin & Dai, Runqi & Wang, Xiang & Qiang, Wenli & Hong, Zhenguo, 2019. "Measurement of effective energy consumption in China's rural household sector and policy implication," Energy Policy, Elsevier, vol. 128(C), pages 553-564.
    20. Abdullaev, Iskandar & Abbas, Qaisar & Azhgaliyeva, Dina & Samad, Ghulam & Akhmedov, Shakhboz (ed.), 2022. "COVID-19 and Economic Recovery Potential in the CAREC Region," ADBI Books, Asian Development Bank Institute, number 25, Décembre.
    21. Dagnachew, Anteneh G. & Hof, Andries F. & Lucas, Paul L. & van Vuuren, Detlef P., 2020. "Scenario analysis for promoting clean cooking in Sub-Saharan Africa: Costs and benefits," Energy, Elsevier, vol. 192(C).
    22. Tian, Zhihua & Tian, Yanfang & Shen, Liangping & Shao, Shuai, 2021. "The health effect of household cooking fuel choice in China: An urban-rural gap perspective," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    23. Shankar, Anita V. & Quinn, Ashlinn K. & Dickinson, Katherine L. & Williams, Kendra N. & Masera, Omar & Charron, Dana & Jack, Darby & Hyman, Jasmine & Pillarisetti, Ajay & Bailis, Rob & Kumar, Praveen , 2020. "Everybody stacks: Lessons from household energy case studies to inform design principles for clean energy transitions," Energy Policy, Elsevier, vol. 141(C).
    24. Dominik Keiner & Larissa D.S.N.S. Barbosa & Dmitrii Bogdanov & Arman Aghahosseini & Ashish Gulagi & Solomon Oyewo & Michael Child & Siavash Khalili & Christian Breyer, 2021. "Global-Local Heat Demand Development for the Energy Transition Time Frame Up to 2050," Energies, MDPI, vol. 14(13), pages 1-51, June.
    25. Bensch, Gunther & Kluve, Jochen & Stöterau, Jonathan, 2016. "The market-based dissemination of modern-energy products as a business model for rural entrepreneurs: Evidence from Kenya," Ruhr Economic Papers 635, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    26. Eduardo Sánchez-Jacob & Andrés González-García & Javier Mazorra & Pedro Ciller & Julio Lumbreras & José Ignacio Pérez-Arriaga, 2021. "Joint Optimal Planning of Electricity and Modern Energy Cooking Services Access in Nyagatare," Energies, MDPI, vol. 14(14), pages 1-24, July.
    27. Robert Ugochukwu Onyeneke & Chinyere Augusta Nwajiuba & Jane Munonye & Uwazie Iyke Uwazie & Nkechinyere Uwajumogu & Christian Obioma Uwadoka & Jonathan Ogbeni Aligbe, 2019. "Improved Cook-stoves and Environmental and Health Outcomes: Lessons from Cross River State, Nigeria," IJERPH, MDPI, vol. 16(19), pages 1-13, September.
    28. Emodi, Nnaemeka Vincent & Haruna, Emmanuel Umoru & Abdu, Nizam & Aldana Morataya, Sergio David & Dioha, Michael O. & Abraham-Dukuma, Magnus C., 2022. "Urban and rural household energy transition in Sub-Saharan Africa: Does spatial heterogeneity reveal the direction of the transition?," Energy Policy, Elsevier, vol. 168(C).
    29. Boris Odilon Kounagbè Lokonon, 2020. "Household cooking fuel choice: Evidence from the Republic of Benin," African Development Review, African Development Bank, vol. 32(4), pages 686-698, December.
    30. W. Douglas Evans & Bonnie N Young & Michael A Johnson & Kirstie A. Jagoe & Dana Charron & Madeleine Rossanese & K Lloyd Morgan & Patricia Gichinga & Julie Ipe, 2019. "The Shamba Chef Educational Entertainment Program to Promote Modern Cookstoves in Kenya: Outcomes and Dose–Response Analysis," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
    31. Wang, Hanjie & Maruejols, Lucie & Yu, Xiaohua, 2021. "Predicting energy poverty with combinations of remote-sensing and socioeconomic survey data in India: Evidence from machine learning," Energy Economics, Elsevier, vol. 102(C).
    32. Suzanne M. Simkovich & Kendra N. Williams & Suzanne Pollard & David Dowdy & Sheela Sinharoy & Thomas F. Clasen & Elisa Puzzolo & William Checkley, 2019. "A Systematic Review to Evaluate the Association between Clean Cooking Technologies and Time Use in Low- and Middle-Income Countries," IJERPH, MDPI, vol. 16(13), pages 1-16, June.
    33. Olorunjuwon David Adetayo & Gbenga John Oladehinde & Samson A. Adeyinka & Adejompo Fagbohunka, 2021. "Household Energy Demand in Typical Nigerian Rural Communities," European Journal of Business Science and Technology, Mendel University in Brno, Faculty of Business and Economics, vol. 7(2), pages 165-185.
    34. Lindgren, Samantha, 2021. "Cookstove implementation and Education for Sustainable Development: A review of the field and proposed research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    35. Das, Karabee & Nonhebel, Sanderine, 2019. "A comparative study of the land required for food and cooking fuel in rural India," Agricultural Systems, Elsevier, vol. 176(C).
    36. Azhgaliyeva, Dina & Mishra, Ranjeeta & Karymshakov, Kamalbek, 2021. "Household Energy Consumption Behaviors during the COVID-19 Pandemic in Mongolia," ADBI Working Papers 1292, Asian Development Bank Institute.

  25. Tooraj Jamasb & Rabindra Nepal & Govinda Timilsina & Michael Toman, 2014. "Energy Sector Reform, Economic Efficiency and Poverty Reduction," Discussion Papers Series 529, School of Economics, University of Queensland, Australia.

    Cited by:

    1. Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
    2. Lisa Bagnoli & Salvador Bertomeu-Sanchez & Antonio Estache & Maria Vagliasindi, 2021. "Does the ownership of utilities matter for social outcomes? A survey of the evidence for developing countries," ULB Institutional Repository 2013/335116, ULB -- Universite Libre de Bruxelles.
    3. Zeus Guevara & Oscar Córdoba & Edith X. M. García & Rafael Bouchain, 2017. "The Status and Evolution of Energy Supply and Use in Mexico Prior to the 2014 Energy Reform: An Input-Output Approach †," Economies, MDPI, vol. 5(1), pages 1-17, March.
    4. Asantewaa, Adwoa & Jamasb, Tooraj & Llorca, Manuel, 2020. "Electricity Sector Reform Performance in Sub-Saharan Africa: A Parametric Distance Function Approach," Working Papers 14-2020, Copenhagen Business School, Department of Economics.
    5. Mahmud I. Imam & Tooraj Jamasb & Manuel Llorca, 2018. "Sector Reforms and Institutional Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Working Papers EPRG 1801, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    6. Lisa Bagnoli & Salvador Bertomeu & Antonio Estache & Maria Vagliasindi, 2020. "Are the Poor Better Off with Public or Private Utilities ?A Survey of the Academic Evidence on Developing Economies," Working Papers ECARES 2020-24, ULB -- Universite Libre de Bruxelles.
    7. Delalibera, Bruno R. & Serrano-Quintero, Rafael & Zimmermann, Guilherme G., 2023. "Reforms in the natural gas sector and economic development," Economic Modelling, Elsevier, vol. 125(C).
    8. Jamasb,Tooraj & Nepal,Rabindra & Timilsina,Govinda R., 2015. "A quarter century effort yet to come of age : a survey of power sector reforms in developing countries," Policy Research Working Paper Series 7330, The World Bank.
    9. Wang, Manyu & Huang, Ying & An, Zidong & Wei, Chu, 2023. "Reforming the world's largest heating system: Quasi-experimental evidence from China," Energy Economics, Elsevier, vol. 117(C).
    10. Antonio Estache, 2016. "Institutions for Infrastructure in Developing Countries: What We Know and the Lot We still Need to Know," Working Papers ECARES ECARES 2016-27, ULB -- Universite Libre de Bruxelles.
    11. Twesigye, Peter, 2022. "Structural, governance, & regulatory incentives for improved utility performance: A comparative analysis of electric utilities in Tanzania, Kenya, and Uganda," Utilities Policy, Elsevier, vol. 79(C).

  26. Mundaca, Luis & Mansoz, Mathilde & Neij, Lena & Timilsina, Govinda R, 2013. "Transaction costs of low-carbon technologies and policies : the diverging literature," Policy Research Working Paper Series 6565, The World Bank.

    Cited by:

    1. Phan, Thu-Ha Dang & Brouwer, Roy & Davidson, Marc David, 2017. "A Global Survey and Review of the Determinants of Transaction Costs of Forestry Carbon Projects," Ecological Economics, Elsevier, vol. 133(C), pages 1-10.
    2. Thomas Adisorn & Lena Tholen & Johannes Thema & Hauke Luetkehaus & Sibylle Braungardt & Katja Huenecke & Katja Schumacher, 2020. "Towards a More Realistic Cost–Benefit Analysis—Attempting to Integrate Transaction Costs and Energy Efficiency Services," Energies, MDPI, vol. 14(1), pages 1-15, December.

  27. de Gorter, Harry & Drabik, Dusan & Kliauga, Erika M. & Timilsina, Govinda R., 2013. "An economic model of Brazil's ethanol-sugar markets and impacts of fuel policies," Policy Research Working Paper Series 6524, The World Bank.

    Cited by:

    1. Nunez, Hector & Onal, Hayri, 2013. "An Economic Analysis of Transportation Fuel Policies in Brazil," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149973, Agricultural and Applied Economics Association.
    2. Moncada, J.A. & Verstegen, J.A. & Posada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2018. "Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach," Energy Policy, Elsevier, vol. 123(C), pages 619-641.
    3. Chia-Lin Chang & Michael McAleer & Yu-Ann Wang, 2016. "Modelling Volatility Spillovers for Bio-ethanol, Sugarcane and Corn Spot and Futures Prices," Tinbergen Institute Discussion Papers 16-014/III, Tinbergen Institute, revised 30 Jan 2017.
    4. Valdes, Constanza & Hjort, Kim & Seeley, Ralph, 2016. "Brazil’s Agricultural Land Use and Trade: Effects of Changes in Oil Prices and Ethanol Demand," Economic Research Report 242449, United States Department of Agriculture, Economic Research Service.
    5. Anelise Rahmeier Seyffarth, 2016. "The Impact of Rising Ethanol Production on the Brazilian Market for Basic Food Commodities: An Econometric Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 511-536, July.
    6. Khanna, Madhu & Hector, Nunez & David, Zilberman, 2014. "The Political-Economy of Biofuel and Cheap Oil Policies in Brazil," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169471, Agricultural and Applied Economics Association.
    7. Oliveira, Sydnei Marssal de & Ribeiro, Celma de Oliveira & Cicogna, Maria Paula Vieira, 2018. "Uncertainty effects on production mix and on hedging decisions: The case of Brazilian ethanol and sugar," Energy Economics, Elsevier, vol. 70(C), pages 516-524.
    8. Khanna, Madhu & Nuñez, Hector M. & Zilberman, David, 2016. "Who pays and who gains from fuel policies in Brazil?," Energy Economics, Elsevier, vol. 54(C), pages 133-143.

  28. Sinkala, Thomson & Timilsina, Govinda R. & Ekanayake, Indira J., 2013. "Are biofuels economically competitive with their petroleum counterparts ?production cost analysis for Zambia," Policy Research Working Paper Series 6499, The World Bank.

    Cited by:

    1. Paul C. Samboko & Mitelo Subakanya & Cliff Dlamini, 2017. "Potential biofuel feedstocks and production in Zambia," WIDER Working Paper Series wp-2017-47, World Institute for Development Economic Research (UNU-WIDER).
    2. Drabik, Dusan & de Gorter, Harry & Timilsina, Govinda R., 2016. "Producing biodiesel from soybeans in Zambia: An economic analysis," Food Policy, Elsevier, vol. 59(C), pages 103-109.

  29. Timilsina, Govinda R., 2013. "How much does an increase in oil prices affect the global economy ? some insights from a general equilibrium analysis," Policy Research Working Paper Series 6515, The World Bank.

    Cited by:

    1. Gbatu, Abimelech Paye & Wang, Zhen & Wesseh, Presley K. & Tutdel, Isaac Yak Repha, 2017. "The impacts of oil price shocks on small oil-importing economies: Time series evidence for Liberia," Energy, Elsevier, vol. 139(C), pages 975-990.

  30. Gautam, Mahesh R. & Timilsina, Govinda R. & Acharya, Kumud, 2013. "Climate change in the Himalayas : current state of knowledge," Policy Research Working Paper Series 6516, The World Bank.

    Cited by:

    1. Roopam Shukla & Kamna Sachdeva & P. K. Joshi, 2018. "Demystifying vulnerability assessment of agriculture communities in the Himalayas: a systematic review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 409-429, March.
    2. Jianchu Xu & R. Grumbine, 2014. "Integrating local hybrid knowledge and state support for climate change adaptation in the Asian Highlands," Climatic Change, Springer, vol. 124(1), pages 93-104, May.
    3. Vikram S. Negi & Deep C. Tiwari & Laxman Singh & Shinny Thakur & Indra D. Bhatt, 2022. "Review and synthesis of climate change studies in the Himalayan region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10471-10502, September.

  31. Boccanfuso, Dorothee & Coulibaly, Massa & Timilsina, Govinda R. & Savard, Luc, 2013. "Macroeconomic and distributional impacts of jatropha-based biodiesel in Mali," Policy Research Working Paper Series 6500, The World Bank.

    Cited by:

    1. Johanna Choumert & Pascale Combes Motel & Charlain Guegang, 2017. "The Biofuel-Development Nexus: A Meta-Analysis," Working Papers 2017.04, FAERE - French Association of Environmental and Resource Economists.
    2. Choumert Nkolo, Johanna & Combes Motel, Pascale & Guegang Djimeli, Charlain, 2018. "Income-generating Effects of Biofuel Policies: A Meta-analysis of the CGE Literature," Ecological Economics, Elsevier, vol. 147(C), pages 230-242.
    3. Timilsina,Govinda R. & Tiwari,Ujjal, 2015. "The economic viability of jatropha biodiesel in Nepal," Policy Research Working Paper Series 7295, The World Bank.
    4. Christian Otchia, 2014. "Agricultural Modernization, Structural Change and Pro-poor Growth: Policy Options for the Democratic Republic of Congo," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 3(1), pages 1-43, December.

  32. de Gorter, Harry & Drabik, Dusan & Timilsina, Govinda R., 2013. "The effect of biodiesel policies on world oilseed markets and developing countries," Policy Research Working Paper Series 6453, The World Bank.

    Cited by:

    1. Joe Parcell & Yasutomo Kojima & Alice Roach & Wayne Cain, 2018. "Global Edible Vegetable Oil Market Trends," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 2(1), pages 2282-2291, January.
    2. Vorotnikova, Ekaterina & Seale, James L, 2014. "The Effect of Energy Policy Act (EPA-2005) on Agricultural Land Allocation Dynamics in the United States," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162553, Southern Agricultural Economics Association.

  33. Parry, Ian W.H. & Timilsina, Govinda R., 2012. "Demand side instruments to reduce road transportation externalities in the greater Cairo metropolitan area," Policy Research Working Paper Series 6083, The World Bank.

    Cited by:

    1. Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris & Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris, 2015. "Transport policies and development," Policy Research Working Paper Series 7366, The World Bank.
    2. World Bank, 2012. "Arab Republic of Egypt - Reshaping Egypt's Economic Geography : Domestic Integration as a Development Platform, Volume 1," World Bank Publications - Reports 11903, The World Bank Group.
    3. World Bank, 2012. "Reshaping Egypt's Economic Geography : Domestic Integration as a Development Platform," World Bank Publications - Reports 11869, The World Bank Group.

  34. Timilsina, Govinda R., 2012. "Economic implications of moving toward global convergence on emission intensities," Policy Research Working Paper Series 6115, The World Bank.

    Cited by:

    1. Zhi-Shuang Zhu & Hua Liao & Huai-Shu Cao & Lu Wang & Yi-Ming Wei & Jinyue Yan, 2012. "The differences of carbon intensity reduction rate across 89 countries in recent three decades," CEEP-BIT Working Papers 38, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    2. Lu, Shibao & Wang, Jianhua & Shang, Yizi & Bao, Haijun & Chen, Huixiong, 2017. "Potential assessment of optimizing energy structure in the city of carbon intensity target," Applied Energy, Elsevier, vol. 194(C), pages 765-773.

  35. Dorothée Boccanfuso & Massa Coulibaly & Govinda R. Timilsina & Luc Savard, 2012. "The prospects of developing Biofuels in Mali," Cahiers de recherche 12-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.

    Cited by:

    1. Gatete, Charly & Dabat, Marie-Helene, 2014. "Développement des agrocarburants en Afrique de l’Ouest. Une analyse institutionnelle comparative," Économie rurale, French Society of Rural Economics (SFER Société Française d'Economie Rurale), vol. 344(November-).
    2. Dorothée Boccanfuso & Massa Coulibaly & Luc Savard & Govinda Timilsina, 2018. "Macroeconomic and Distributional Impacts of Jatropha Based Biodiesel in Mali," Economies, MDPI, vol. 6(4), pages 1-22, November.

  36. Chisari, Omar O. & Romero, Carlos A. & Timilsina, Govinda, 2012. "Potential gains and losses of Biofuel production in Argentina: a computable general equilibrium analysis," Policy Research Working Paper Series 6124, The World Bank.

    Cited by:

    1. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt & Binfield, Julian, 2017. "Complement or substitute: Ethanol’s uncertain relationship with gasoline under alternative petroleum price and policy scenarios," Applied Energy, Elsevier, vol. 191(C), pages 385-397.

  37. Chen, Y.-H. Henry & Timilsina, Govinda R., 2012. "Economic implications of reducing carbon emissions from energy use and industrial processes in Brazil," Policy Research Working Paper Series 6135, The World Bank.

    Cited by:

    1. Landis,Florian & Timilsina,Govinda R., 2015. "The economics of policy instruments to stimulate wind power in Brazil," Policy Research Working Paper Series 7346, The World Bank.
    2. Garaffa, Rafael & Cunha, Bruno S.L. & Cruz, Talita & Bezerra, Paula & Lucena, André F.P. & Gurgel, Angelo C., 2021. "Distributional effects of carbon pricing in Brazil under the Paris Agreement," Energy Economics, Elsevier, vol. 101(C).

  38. Simon Mevel & Ashish Shrestha & Govinda Timilsina, 2011. "Oil price, biofuels and food supply," Post-Print hal-01884880, HAL.

    Cited by:

    1. Al-Maadid, Alanoud & Caporale, Guglielmo Maria & Spagnolo, Fabio & Spagnolo, Nicola, 2017. "Spillovers between food and energy prices and structural breaks," International Economics, Elsevier, vol. 150(C), pages 1-18.
    2. Doshi, Amar & Pascoe, Sean & Coglan, Louisa & Rainey, Thomas J., 2016. "Economic and policy issues in the production of algae-based biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 329-337.
    3. Carpio, Lucio Guido Tapia, 2019. "The effects of oil price volatility on ethanol, gasoline, and sugar price forecasts," Energy, Elsevier, vol. 181(C), pages 1012-1022.
    4. Ladislav Kristoufek & Karel Janda & David Zilberman, 2012. "Mutual Responsiveness of Biofuels, Fuels and Food Prices," CAMA Working Papers 2012-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Doumax-Tagliavini, Virginie & Sarasa, Cristina, 2018. "Looking towards policies supporting biofuels and technological change: Evidence from France," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 430-439.
    6. James Wilkinson & Atanu Ghoshray, 2013. "A Cointegration Analysis of Oil and Agricultural Prices," Review of Market Integration, India Development Foundation, vol. 5(3), pages 249-270, December.
    7. Virginie Doumax & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, tax policies and oil price: insights from a dynamic CGE model," EcoMod2013 5417, EcoMod.
    8. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    9. Bilgili, Faik & Koçak, Emrah & Kuşkaya, Sevda & Bulut, Ümit, 2020. "Estimation of the co-movements between biofuel production and food prices: A wavelet-based analysis," Energy, Elsevier, vol. 213(C).
    10. De Lucia, Caterina & Bartlett, Mark, 2014. "Implementing a biofuel economy in the EU: Lessons from the SUSTOIL project and future perspectives for next generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 22-30.
    11. Virginie Doumax-Tagliavini & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, Tax Policies and Oil Prices in France: Insights from a Dynamic CGE Model," EcoMod2013 6245, EcoMod.
    12. Rico, J.A.P. & Sauer, I.L., 2015. "A review of Brazilian biodiesel experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 513-529.
    13. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Non-linear price transmission between biofuels, fuels and food commodities," Working Papers IES 2013/16, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Oct 2013.
    14. Hasan AYDOGAN & Mario HIRZ & Helmut BRUNNER, 2014. "The use and future of biofuels," Proceedings of International Academic Conferences 0702136, International Institute of Social and Economic Sciences.
    15. Qu, Yang & Hooper, Tara & Swales, J. Kim & Papathanasopoulou, Eleni & Austen, Melanie C. & Yan, Xiaoyu, 2021. "Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland," Energy Policy, Elsevier, vol. 149(C).
    16. M'Barek, Robert & Philippidis, George & Suta, Cornelia & Vinyes, Cristina & Caivano, Arnaldo & Ferrari, Emanuele & Ronzon, Tevecia & Sanjuan Lopez, Ana & Santini, Fabien, 2014. "Observing and analysing the Bioeconomy in the EU – Adapting data and tools to new questions and challenges," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 3(1), pages 1-9, April.
    17. Nigatu, Getachew & Hjort, Kim & Somwaru, Agapi & Hansen, James, 2015. "Projecting the effect of oil price regimes on biofuel markets," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205312, Agricultural and Applied Economics Association.
    18. Jahantigh , Forough & Rahmi Ghasemabadi , Mohammad & Jalali , Omolbanin, 2018. "The Impact of Monetary Policy Shock on the Price of Storable Goods: A Case Study of Food," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 13(4), pages 471-490, October.
    19. Junker, Franziska & Wolf, Verena & Marquardt, Sandra & Ledebur, Oliver, 2015. "Changes to EU Biofuel Policy- Turmoil on Feedstock Markets," 2015 Conference, August 9-14, 2015, Milan, Italy 211819, International Association of Agricultural Economists.
    20. Timilsina, Govinda R., 2013. "How much does an increase in oil prices affect the global economy ? some insights from a general equilibrium analysis," Policy Research Working Paper Series 6515, The World Bank.
    21. Wang, Xiao & Zhang, Chuanguo, 2014. "The impacts of global oil price shocks on China׳s fundamental industries," Energy Policy, Elsevier, vol. 68(C), pages 394-402.
    22. Cai, Yongxia & Beach, Robert H. & Zhang, Yuquan, 2014. "Exploring the Implications of Oil Prices for Global Biofuels, Food Security, and GHG Mitigation," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170589, Agricultural and Applied Economics Association.
    23. Rafael Henrique Mainardes Ferreira & Claudia Tania Picinin, 2018. "Bibliometric analysis for characterization of oil production in Brazilian territory," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1945-1974, September.

  39. Timilsina, Govinda R. & Mevel, Simon & Shrestha, Ashish, 2011. "World oil price and biofuels : a general equilibrium analysis," Policy Research Working Paper Series 5673, The World Bank.

    Cited by:

    1. A. Anzuini & M. J. Lombardi & P. Pagano, 2013. "The Impact of Monetary Policy Shocks on Commodity Prices," International Journal of Central Banking, International Journal of Central Banking, vol. 9(3), pages 125-150, September.
    2. Mokni, Khaled & Ben-Salha, Ousama, 2020. "Asymmetric causality in quantiles analysis of the oil-food ‏ ‏nexus since the 1960s," Resources Policy, Elsevier, vol. 69(C).

  40. Timilsina, Govinda R. & Csordas, Stefan & Mevel, Simon, 2011. "Under what conditions does a carbon tax on fossil fuels stimulate biofuels ?," Policy Research Working Paper Series 5678, The World Bank.

    Cited by:

    1. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    2. Virginie Doumax-Tagliavini & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, Tax Policies and Oil Prices in France: Insights from a Dynamic CGE Model," EcoMod2013 6245, EcoMod.
    3. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    4. Somorin, Tosin Onabanjo & Kolios, Athanasios J., 2017. "Prospects of deployment of Jatropha biodiesel-fired plants in Nigeria’s power sector," Energy, Elsevier, vol. 135(C), pages 726-739.

  41. Timilsina , Govinda R. & Mevel, Simon, 2011. "Biofuels and climate change mitigation : a CGE analysis incorporating land-use change," Policy Research Working Paper Series 5672, The World Bank.

    Cited by:

    1. Pogany, Peter, 2013. "Thermodynamic Isolation and the New World Order," MPRA Paper 49924, University Library of Munich, Germany.
    2. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    3. Jensen, Henning Tarp & Keogh-Brown, Marcus R. & Shankar, Bhavani & Aekplakorn, Wichai & Basu, Sanjay & Cuevas, Soledad & Dangour, Alan D. & Gheewala, Shabbir H. & Green, Rosemary & Joy, Edward J.M. & , 2019. "Palm oil and dietary change: Application of an integrated macroeconomic, environmental, demographic, and health modelling framework for Thailand," Food Policy, Elsevier, vol. 83(C), pages 92-103.
    4. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. Mochizuki, Junko & Coffman, Makena & Yanagida, John F., 2015. "Market, welfare and land-use implications of lignocellulosic bioethanol in Hawai'i," Renewable Energy, Elsevier, vol. 76(C), pages 102-114.
    6. Cabalu, Helen & Koshy, Paul & Corong, Erwin & Rodriguez, U-Primo E. & Endriga, Benjamin A., 2015. "Modelling the impact of energy policies on the Philippine economy: Carbon tax, energy efficiency, and changes in the energy mix," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 222-237.
    7. Marcus Keogh-Brown & Henning Tarp Jensen & Bhavani Shankar & Sanjay Basu & Soledad Cuevas & Alan Dangour & Shabbir H. Gheewala & Rosemary Green & Edward Joy & Nalitra Thaiprasert & Richard Smith, 2017. "An integrated macroeconomic, demographic and health modelling framework for palm oil policies in Thailand," EcoMod2017 10569, EcoMod.
    8. Withers, Mitch R. & Malina, Robert & Barrett, Steven R.H., 2015. "Carbon, climate, and economic breakeven times for biofuel from woody biomass from managed forests," Ecological Economics, Elsevier, vol. 112(C), pages 45-52.
    9. Britz, Wolfgang & Li, Jingwen & Shang, Linmei, 2021. "Combining large-scale sensitivity analysis in Computable General Equilibrium models with Machine Learning: An Example Application to policy supporting the bio-economy," Conference papers 333285, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    10. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    11. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2023. "Interactions Between U.S. Vehicle Electrification, Climate Change, and Global Agricultural Markets," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 99-123, January.
    12. Junko Mochizuki & John F. Yanagida & Makena Coffman, 2013. "Market, Welfare and Land-Use Implications of Lignocellulosic Bioethanol in Hawai�i," Working Papers 2013-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    13. Marquez, Gian Powell B. & Santiañez, Wilfred John E. & Trono, Gavino C. & Montaño, Marco Nemesio E. & Araki, Hiroshi & Takeuchi, Hisae & Hasegawa, Tatsuya, 2014. "Seaweed biomass of the Philippines: Sustainable feedstock for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1056-1068.
    14. Taran Fæhn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa &, 2020. "Capturing Key Energy and Emission Trends in CGE models. Assessment of Status and Remaining Challenges," Discussion Papers 936, Statistics Norway, Research Department.
    15. Zhang, Tao & Ma, Ying & Li, Angfei, 2021. "Scenario analysis and assessment of China’s nuclear power policy based on the Paris Agreement: A dynamic CGE model," Energy, Elsevier, vol. 228(C).
    16. Ronald D. Sands, Katja Schumacher, and Hannah Forster, 2014. "U.S. CO2 Mitigation in a Global Context: Welfare, Trade and Land Use," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).

  42. Timilsina, Govinda R. & Kurdgelashvili, Lado & Narbel, Patrick A., 2011. "A review of solar energy : markets, economics and policies," Policy Research Working Paper Series 5845, The World Bank.

    Cited by:

    1. Absi Halabi, M. & Al-Qattan, A. & Al-Otaibi, A., 2015. "Application of solar energy in the oil industry—Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 296-314.
    2. Sener, Can & Fthenakis, Vasilis, 2014. "Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 854-868.
    3. Karel Janda & Štěpán Krška & Jan Průša, 2014. "Česká fotovoltaická energie: modelový odhad nákladů na její podporu [Czech Photovoltaic Energy: Model Estimation of The Costs of its Support]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(3), pages 323-346.
    4. Mohammed Albattah & Daniel Efurosibina Attoye, 2021. "A Quantitative Investigation on Awareness of Renewable Energy Building Technology in the United Arab Emirates," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    5. Reichelstein, Stefan & Yorston, Michael, 2013. "The prospects for cost competitive solar PV power," Energy Policy, Elsevier, vol. 55(C), pages 117-127.
    6. Kamphol Promjiraprawat & Bundit Limmeechokchai, 2012. "Assessment of Thailand’s Energy Policies and CO 2 Emissions: Analyses of Energy Efficiency Measures and Renewable Power Generation," Energies, MDPI, vol. 5(8), pages 1-20, August.
    7. Ahmad Bathaei & Dalia Štreimikienė, 2023. "Renewable Energy and Sustainable Agriculture: Review of Indicators," Sustainability, MDPI, vol. 15(19), pages 1-24, September.
    8. de Faria, Haroldo & Trigoso, Federico B.M. & Cavalcanti, João A.M., 2017. "Review of distributed generation with photovoltaic grid connected systems in Brazil: Challenges and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 469-475.
    9. Hung Tran Van & Irina Onyusheva & Denis Ushakov & Radj Santhanakrishnan, 2018. "Impedimental Policies Impacting Shrinking World Solar Industry Eco-Economic Development," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 21-27.
    10. Jan Prùša & Andrea Klimešová & Karel Janda, 2012. "Economic Loss in Czech Photovoltaic Power Plants," Working Papers IES 2012/18, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jul 2012.
    11. Koo, Bonsang, 2017. "Examining the impacts of Feed-in-Tariff and the Clean Development Mechanism on Korea's renewable energy projects through comparative investment analysis," Energy Policy, Elsevier, vol. 104(C), pages 144-154.
    12. Devabhaktuni, Vijay & Alam, Mansoor & Shekara Sreenadh Reddy Depuru, Soma & Green, Robert C. & Nims, Douglas & Near, Craig, 2013. "Solar energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 555-564.
    13. Jun Li & Lisi Jia & Longjian Li & Zehang Huang & Ying Chen, 2020. "Hybrid Microencapsulated Phase-Change Material and Carbon Nanotube Suspensions toward Solar Energy Conversion and Storage," Energies, MDPI, vol. 13(17), pages 1-11, August.
    14. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko & Hesham S. Rabayah & Raed M. Abendeh & Rami Alawneh, 2023. "ARIMA Models in Solar Radiation Forecasting in Different Geographic Locations," Energies, MDPI, vol. 16(13), pages 1-24, June.
    15. Průša, Jan & Klimešová, Andrea & Janda, Karel, 2013. "Consumer loss in Czech photovoltaic power plants in 2010–2011," Energy Policy, Elsevier, vol. 63(C), pages 747-755.
    16. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Uniіat, Lіudmyla, 2018. "Economic Efficiency Of Using Solar Energy In The Agroindustrial Business," EUREKA: Social and Humanities, Scientific Route OÜ, issue 2, pages 9-18.
    18. Olatayo, Kunle Ibukun & Wichers, J. Harry & Stoker, Piet W., 2020. "The advanced and moderate-growth development paths for the viability and future growth of small wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    19. Ansari, Md. Fahim & Kharb, Ravinder Kumar & Luthra, Sunil & Shimmi, S.L. & Chatterji, S., 2013. "Analysis of barriers to implement solar power installations in India using interpretive structural modeling technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 163-174.
    20. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    21. Nejat, Payam & Morsoni, Abdul Kasir & Jomehzadeh, Fatemeh & Behzad, Hamid & Saeed Vesali, Mohamad & Majid, M.Z.Abd., 2013. "Iran's achievements in renewable energy during fourth development program in comparison with global trend," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 561-570.
    22. Janda, Karel & Krska, Stepan & Prusa, Jan, 2014. "Odhad nákladů na podporu české fotovoltaické energie [The Estimation of the Cost of Promotion of the Czech Photovoltaic Energy]," MPRA Paper 54108, University Library of Munich, Germany.
    23. Nandal, Vinod & Kumar, Raj & Singh, S.K., 2019. "Barriers identification and analysis of solar power implementation in Indian thermal power plants: An Interpretative Structural Modeling approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    24. Sıdıka Ece Yılmaz & Hasan Yildizhan & Cihan Yıldırım & Chuang-Yao Zhao & João Gomes & Tarik Alkharusi, 2023. "The Drivers and Barriers of the Solar Water Heating Entrepreneurial System: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 15(20), pages 1-20, October.

  43. Hochman, Gal & Rajagopal, Deepak & Timilsina, Govinda & Zilberman, David, 2011. "The role of inventory adjustments in quantifying factors causing food price inflation," Policy Research Working Paper Series 5744, The World Bank.

    Cited by:

    1. Héctor M. Núñez & Andrés Trujillo-Barrera, 2015. "Impact of U.S. Biofuel Policy in the Presence of Drastic Climate Conditions," Working papers DTE 585, CIDE, División de Economía.
    2. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2013. "Impacts of Ethanol Policy on Corn Prices: A Review and Meta-Analysis of Recent Evidence," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149940, Agricultural and Applied Economics Association.
    3. Drabik, Dusan, 2011. "The Theory of Biofuel Policy and Food Grain Prices," Working Papers 126615, Cornell University, Department of Applied Economics and Management.
    4. Leucci, A. C. & Ghinoi, S. & Sgargi, D. & Wesz, V. J., Jr., 2013. "Variation and links among food and energy international prices. An analysis through VAR models from 2000 to 2012," 2013 Second Congress, June 6-7, 2013, Parma, Italy 149923, Italian Association of Agricultural and Applied Economics (AIEAA).
    5. John Baffes & Tassos Haniotis, 2016. "What Explains Agricultural Price Movements?," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 706-721, September.
    6. James Wilkinson & Atanu Ghoshray, 2013. "A Cointegration Analysis of Oil and Agricultural Prices," Review of Market Integration, India Development Foundation, vol. 5(3), pages 249-270, December.
    7. Cororaton, Caesar B. & Timilsina, Govinda R. & Mevel, Simon, 2010. "Impacts Of Large Scale Expansion Of Biofuels On Global Poverty And Income Distribution," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91279, International Agricultural Trade Research Consortium.
    8. Gbadebo Oladosu & Siwa Msangi, 2013. "Biofuel-Food Market Interactions: A Review of Modeling Approaches and Findings," Agriculture, MDPI, vol. 3(1), pages 1-19, February.
    9. Felicia Wu & Hasan Guclu, 2013. "Global Maize Trade and Food Security: Implications from a Social Network Model," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2168-2178, December.
    10. David Laborde & Hugo Valin, 2012. "MODELING LAND-USE CHANGES IN A GLOBAL CGE: ASSESSING THE EU BIOFUEL MANDATES WITH THE MIRAGE-BioF MODEL," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-39.
    11. Barrows, Geoffrey & Sexton, Steven & Zilberman, David, 2014. "The impact of agricultural biotechnology on supply and land-use," Environment and Development Economics, Cambridge University Press, vol. 19(6), pages 676-703, December.
    12. Mohamed Boly & Aicha Sanou, 2022. "Biofuels and food security: evidence from Indonesia and Mexico," Post-Print hal-03602227, HAL.
    13. Anelise Rahmeier Seyffarth, 2016. "The Impact of Rising Ethanol Production on the Brazilian Market for Basic Food Commodities: An Econometric Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 511-536, July.
    14. Hansen, Bjørn Gunnar & Li, Yushu, 2015. "Future world market prices of milk and feed looking into the crystal ball," Discussion Papers 2015/17, Norwegian School of Economics, Department of Business and Management Science.
    15. Chen, Xiaoguang & Khanna, Madhu, 2014. "Indirect Land Use Effects of Corn Ethanol in the U.S: Implications for the Conservation Reserve Program," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170284, Agricultural and Applied Economics Association.
    16. Gordon C. Rausser & Harry de Gorter, 2013. "US Policy Contributions to Agricultural Commodity Price Fluctuations, 2006-12," WIDER Working Paper Series wp-2013-033, World Institute for Development Economic Research (UNU-WIDER).
    17. Baffes, John & Dennis, Allen, 2013. "Long-term drivers of food prices," Policy Research Working Paper Series 6455, The World Bank.
    18. de Gorter, Harry & Drabik, Dusan, 2015. "Developing Countries' Policy Responses to Food Price Boom and Biofuel Policies," 2015 Conference, August 9-14, 2015, Milan, Italy 211564, International Association of Agricultural Economists.
    19. Pinstrup-Andersen, Per (ed.), 2016. "Food Price Policy in an Era of Market Instability: A Political Economy Analysis," OUP Catalogue, Oxford University Press, number 9780198788836.
    20. Gutierrez, L. & Piras, F., 2013. "A Global Wheat Market Model (GLOWMM) for the Analysis of Wheat Export Prices," 2013 Second Congress, June 6-7, 2013, Parma, Italy 149760, Italian Association of Agricultural and Applied Economics (AIEAA).
    21. Štěpán Chrz & Karel Janda & Ladislav Krištoufek, 2014. "Modelování provázanosti trhů potravin, biopaliv a fosilních paliv [Modeling Interconnections within Food, Biofuel, and Fossil Fuel Markets]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 117-140.
    22. Richard Alioma & Manfred Zeller & Yee Khor Ling, 2022. "Analysis of long-term prices of micronutrient-dense and starchy staple foods in developing countries," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-21, December.
    23. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    24. Hector, Nuñez & Andres, Trujillo-Barrera, 2014. "Impact of U.S. Biofuel Policy in the Presence of Uncertain Climate Conditions," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170620, Agricultural and Applied Economics Association.
    25. Capitani, Daniel Henrique Dario, 2014. "Biofuels versus food: How much Brazilian ethanol production can affect domestic food prices," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170267, Agricultural and Applied Economics Association.
    26. Gal Hochman & Scott Kaplan & Deepak Rajagopal & David Zilberman, 2012. "Biofuel and Food-Commodity Prices," Agriculture, MDPI, vol. 2(3), pages 1-10, September.

  44. Dorothée Boccanfuso & Massa Coulibaly & Govinda R. Timilsina & Luc Savard, 2011. "Economic and Distributional Impacts of Biofuels in Mali," Cahiers de recherche 11-08, Departement d'économique de l'École de gestion à l'Université de Sherbrooke, revised May 2011.

    Cited by:

    1. Christian Otchia, 2014. "Agricultural Modernization, Structural Change and Pro-poor Growth: Policy Options for the Democratic Republic of Congo," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 3(1), pages 1-43, December.

  45. Cheng, Jay J. & Timilsina, Govinda R, 2010. "Advanced biofuel technologies : status and barriers," Policy Research Working Paper Series 5411, The World Bank.

    Cited by:

    1. Omer AM, 2018. "Advanced in Biomass and Biogas Energy," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 11(1), pages 21-33, January.
    2. Bhutto, Abdul Waheed & Qureshi, Khadija & Harijan, Khanji & Abro, Rashid & Abbas, Tauqeer & Bazmi, Aqeel Ahmed & Karim, Sadia & Yu, Guangren, 2017. "Insight into progress in pre-treatment of lignocellulosic biomass," Energy, Elsevier, vol. 122(C), pages 724-745.
    3. Tye, Ying Ying & Lee, Keat Teong & Wan Abdullah, Wan Nadiah & Leh, Cheu Peng, 2016. "The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 155-172.

  46. Timilsina, Govinda R. & Beghin, John C. & van der Mensbrugghe, Dominique & Mevel, Simon, 2010. "The impacts of biofuel targets on land-use change and food supply : a global CGE assessment," Policy Research Working Paper Series 5513, The World Bank.

    Cited by:

    1. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    2. Héctor M. Núñez & Andrés Trujillo-Barrera, 2015. "Impact of U.S. Biofuel Policy in the Presence of Drastic Climate Conditions," Working papers DTE 585, CIDE, División de Economía.
    3. Anderson, Kym & Strutt, Anna, 2012. "Agriculture and Food Security in Asia by 2030," ADBI Working Papers 368, Asian Development Bank Institute.
    4. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2013. "Impacts of Ethanol Policy on Corn Prices: A Review and Meta-Analysis of Recent Evidence," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149940, Agricultural and Applied Economics Association.
    5. Kuhn, Arnim & Endeshaw, Kassahun, 2015. "Trends and Drivers of Crop Biomass Demand: Sub-Saharan Africa vs the Rest of the World," Discussion Papers 212930, University of Bonn, Institute for Food and Resource Economics.
    6. Weng, Yuwei & Chang, Shiyan & Cai, Wenjia & Wang, Can, 2019. "Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China," Applied Energy, Elsevier, vol. 236(C), pages 514-525.
    7. Francesco Bosello & Marinella Davide & Isabella Alloisio, 2016. "Economic Implications of EU Mitigation Policies: Domestic and International Effects," Working Papers 2016.34, Fondazione Eni Enrico Mattei.
    8. Haile, Mekbib Gebretsadik & Kalkuhl, Matthias, 2013. "Volatility in the international food markets: implications for global agricultural supply and for market and price policy," 53rd Annual Conference, Berlin, Germany, September 25-27, 2013 156097, German Association of Agricultural Economists (GEWISOLA).
    9. Kym Anderson & Anna Strutt, 2013. "Emerging Economies, Productivity Growth, and Trade with Resource-Rich Economies by 2030," Departmental Working Papers 2013-17, The Australian National University, Arndt-Corden Department of Economics.
    10. Haile, Mekbib G. & Kalkuhl, Matthias & Braun, Joachim von, 2013. "Inter-and intra-annual global crop acreage response to prices and price risk," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149695, Agricultural and Applied Economics Association.
    11. Kirby Ledvina & Niven Winchester & Kenneth Strzepek & John M. Reilly, 2018. "New Data for Representing Irrigated Agriculture in Economy-Wide Models," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 122-155, June.
    12. Winchester, Niven & Ledvina, Kirby, 2017. "The impact of oil prices on bioenergy, emissions and land use," Energy Economics, Elsevier, vol. 65(C), pages 219-227.
    13. Çağatay, Selim & Taşdoğan, Celal & Özeş, Reyhan, 2017. "Analysing the impact of targeted bio-ethanol blending ratio in Turkey," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 6(2), September.
    14. Simon Mevel & Ashish Shrestha & Govinda Timilsina, 2011. "Oil price, biofuels and food supply," Post-Print hal-01884880, HAL.
    15. Kym Anderson & Anna Strutt, 2014. "Implications for Indonesia of Asia's Rise in the Global Economy," Departmental Working Papers 2014-10, The Australian National University, Arndt-Corden Department of Economics.
    16. Mochizuki, Junko & Coffman, Makena & Yanagida, John F., 2015. "Market, welfare and land-use implications of lignocellulosic bioethanol in Hawai'i," Renewable Energy, Elsevier, vol. 76(C), pages 102-114.
    17. Anderson, Kym & Strutt, Anna, 2013. "South America’s Contribution to World Food Markets: GTAP Projections to 2030," Working Papers 145369, International Agricultural Trade Research Consortium.
    18. Timilsina, Govinda R. & Landis, Florian, 2014. "Economics of transiting to renewable energy in Morocco : a general equilibrium analysis," Policy Research Working Paper Series 6940, The World Bank.
    19. Stephanie Monjon & Philippe Quirion, 2011. "A border adjustment for the EU ETS: reconciling WTO rules and capacity to tackle carbon leakage," Post-Print hal-00715462, HAL.
    20. Muscat, A. & de Olde, E.M. & Candel, J.J.L. & de Boer, I.J.M. & Ripoll-Bosch, R., 2022. "The Promised Land: Contrasting frames of marginal land in the European Union," Land Use Policy, Elsevier, vol. 112(C).
    21. Poku, A.-G. & Birner, R. & Gupta, S., 2018. "How To Make Contract Farming Arrangements Work: Evidence From A Public And A Private Cassava Outgrower Scheme In Ghana," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277471, International Association of Agricultural Economists.
    22. Szulczyk, Kenneth R. & Cheema, Muhammad A. & Cullen, Ross & Khan, Atiqur Rahman, 2020. "Bioelectricity in Malaysia: economic feasibility, environmental and deforestation implications," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(2), April.
    23. Cororaton, Caesar B. & Timilsina, Govinda R. & Mevel, Simon, 2010. "Impacts Of Large Scale Expansion Of Biofuels On Global Poverty And Income Distribution," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91279, International Agricultural Trade Research Consortium.
    24. Krissana Treesilvattanakul & Farzad Taheripour & Wallace E. Tyner, 2014. "Application of US and EU Sustainability Criteria to Analysis of Biofuels-Induced Land Use Change," Energies, MDPI, vol. 7(8), pages 1-10, August.
    25. Adu-Gyamfi Poku & Regina Birner & Saurabh Gupta, 2018. "Making Contract Farming Arrangements Work in Africa’s Bioeconomy: Evidence from Cassava Outgrower Schemes in Ghana," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    26. Timilsina, Govinda R., 2015. "Oil prices and the global economy: A general equilibrium analysis," Energy Economics, Elsevier, vol. 49(C), pages 669-675.
    27. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    28. Vitezslav Pisa & Jan Bruha & Vitezslav Pisa, 2011. "Dynamics of the Commodity Prices and Quantities: An Analysis using a Dynamic Multiregional CGE Model," EcoMod2011 2889, EcoMod.
    29. Anelise Rahmeier Seyffarth, 2016. "The Impact of Rising Ethanol Production on the Brazilian Market for Basic Food Commodities: An Econometric Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 511-536, July.
    30. Qu, Yang & Swales, J. Kim & Hooper, Tara & Austen, Melanie C. & Wang, Xinhao & Papathanasopoulou, Eleni & Huang, Junling & Yan, Xiaoyu, 2023. "Economic trade-offs in marine resource use between offshore wind farms and fisheries in Scottish waters," Energy Economics, Elsevier, vol. 125(C).
    31. Virginie Doumax-Tagliavini & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, Tax Policies and Oil Prices in France: Insights from a Dynamic CGE Model," EcoMod2013 6245, EcoMod.
    32. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    33. Timilsina , Govinda R. & Mevel, Simon, 2011. "Biofuels and climate change mitigation : a CGE analysis incorporating land-use change," Policy Research Working Paper Series 5672, The World Bank.
    34. Anderson, Kym & Jha, Shikha & Nelgen, Signe & Strutt, Anna, 2012. "Reexamining Policies for Food Security," ADB Economics Working Paper Series 301, Asian Development Bank.
    35. Anderson, Kym & Strutt, Anna, 2012. "Asia?s Growth, the Changing Geography of World Trade, and Food Security: Projections to 2030," CEPR Discussion Papers 8950, C.E.P.R. Discussion Papers.
    36. Timilsina, Govinda R. & Chisari, Omar O. & Romero, Carlos A., 2013. "Economy-wide impacts of biofuels in Argentina," Energy Policy, Elsevier, vol. 55(C), pages 636-647.
    37. Giacomo Branca & Erika Felix & Irini Maltsoglou & Luis E. Rincon & James Thurlow, 2014. "Producing Biofuels in Low-Income Countries: An Integrated Environmental and Economic Assessment for Tanzania," WIDER Working Paper Series wp-2014-018, World Institute for Development Economic Research (UNU-WIDER).
    38. Junko Mochizuki & John F. Yanagida & Makena Coffman, 2013. "Market, Welfare and Land-Use Implications of Lignocellulosic Bioethanol in Hawai�i," Working Papers 2013-10, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    39. Haile, Mekbib G. & Kalkuhl, Matthias & von Braun, Joachim, 2013. "Short-term global crop acreage response to international food prices and implications of volatility," Discussion Papers 145308, University of Bonn, Center for Development Research (ZEF).
    40. Abdelradi, Fadi & Serra, Teresa, 2015. "Food–energy nexus in Europe: Price volatility approach," Energy Economics, Elsevier, vol. 48(C), pages 157-167.
    41. van der Mensbrugghe, Dominique, 2013. "Modeling the Global Economy – Forward-Looking Scenarios for Agriculture," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 933-994, Elsevier.
    42. Timilsina, Govinda R., 2012. "Economic implications of moving toward global convergence on emission intensities," Policy Research Working Paper Series 6115, The World Bank.
    43. Gohin, Alexandre, 2017. "On the direct, indirect and induced impacts of public policies: The European biofuel case," Working Papers 264955, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    44. Lars Nilsson, 2018. "Reflections on the Economic Modelling of Free Trade Agreements," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 3(1), pages 156-186, June.
    45. Alexandre Gohin, 2017. "On the direct, indirect and induced impacts of public policies: The European biofuel case," Working Papers SMART 17-09, INRAE UMR SMART.
    46. Chih-Chun Kung & Hualin Xie & Tao Wu & Shih-Chih Chen, 2014. "Biofuel for Energy Security: An Examination on Pyrolysis Systems with Emissions from Fertilizer and Land-Use Change," Sustainability, MDPI, vol. 6(2), pages 1-18, January.
    47. Anderson, Kym & Strutt, Anna, 2011. "The Changing Geography of World Trade: Projections to 2030," Conference papers 332157, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    48. Dick, Ndukwe Agbai & Wilson, Paul, 2018. "Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 500-514.
    49. Qu, Yang & Hooper, Tara & Swales, J. Kim & Papathanasopoulou, Eleni & Austen, Melanie C. & Yan, Xiaoyu, 2021. "Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland," Energy Policy, Elsevier, vol. 149(C).
    50. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre.
    51. Ehsanreza Sajedinia & Wallace E. Tyner, 2021. "Use of General Equilibrium Models in Evaluating Biofuels Policies," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 14, pages 437-465, World Scientific Publishing Co. Pte. Ltd..
    52. Castro, Yessica A. & Ellis, Joshua T. & Miller, Charles D. & Sims, Ronald C., 2015. "Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation," Applied Energy, Elsevier, vol. 140(C), pages 14-19.
    53. Hector, Nuñez & Andres, Trujillo-Barrera, 2014. "Impact of U.S. Biofuel Policy in the Presence of Uncertain Climate Conditions," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170620, Agricultural and Applied Economics Association.
    54. Landis,Florian & Timilsina,Govinda R., 2015. "The economics of policy instruments to stimulate wind power in Brazil," Policy Research Working Paper Series 7346, The World Bank.
    55. George Philippidis & Heleen Bartelings & John Helming & Robert M’barek & Edward Smeets & Hans Van Meijl, 2018. "The Good, the Bad and the Uncertain: Bioenergy Use in the European Union," Energies, MDPI, vol. 11(10), pages 1-19, October.
    56. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    57. Castiblanco, Carmenza & Moreno, Alvaro & Etter, Andrés, 2015. "Impact of policies and subsidies in agribusiness: The case of oil palm and biofuels in Colombia," Energy Economics, Elsevier, vol. 49(C), pages 676-686.
    58. Chen, Qiu & Mirzabaev, Alisher, 2016. "Evaluating the Impacts of Traditional Biomass Energy Use on Agricultural Production in Sichuan, China," Discussion Papers 250213, University of Bonn, Center for Development Research (ZEF).
    59. Cornelis Gardebroek & Jeffrey J. Reimer & Lieneke Baller, 2017. "The Impact of Biofuel Policies on Crop Acreages in Germany and France," Journal of Agricultural Economics, Wiley Blackwell, vol. 68(3), pages 839-860, September.
    60. Alexandre Gohin, 2020. "The Land Use Impacts of the EU Biodiesel Policy: Assessing the Direct, Indirect and Induced Effects," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(2), pages 305-329, June.
    61. Paulo Henrique Hoeckel & Augusto Mussi Alvim & José Pedro Pontes & João Dias, 2023. "The Ethanol Market and Its Relation to the Price of Agricultural Commodities," Energies, MDPI, vol. 16(6), pages 1-18, March.
    62. Ullah, Kifayat & Kumar Sharma, Vinod & Dhingra, Sunil & Braccio, Giacobbe & Ahmad, Mushtaq & Sofia, Sofia, 2015. "Assessing the lignocellulosic biomass resources potential in developing countries: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 682-698.
    63. Gurgel, Angelo & Chen, Y.-H. Henry & Paltsev, Sergey & Reilly, John, 2016. "Linking Natural Resources to the CGE framework: the case of Land Use Changes in the EPPA Model," Conference papers 332705, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    64. Guo, Jin & Tanaka, Tetsuji, 2022. "Do biofuel production and financial speculation in agricultural commodities influence African food prices? New evidence from a TVP-VAR extended joint connectedness approach," Energy Economics, Elsevier, vol. 116(C).
    65. Timilsina, Govinda R., 2013. "How much does an increase in oil prices affect the global economy ? some insights from a general equilibrium analysis," Policy Research Working Paper Series 6515, The World Bank.
    66. Sansi Yang & C. Richard Shumway, 2020. "Knowledge accumulation in US agriculture: research and learning by doing," Journal of Productivity Analysis, Springer, vol. 54(2), pages 87-105, December.
    67. Zhang, Wei & Yu, Elaine A. & Rozelle, Scott & Yang, Jun & Msangi, Siwa, 2013. "The impact of biofuel growth on agriculture: Why is the range of estimates so wide?," Food Policy, Elsevier, vol. 38(C), pages 227-239.
    68. Timilsina, Govinda R. & Csordás, Stefan & Mevel, Simon, 2011. "When does a carbon tax on fossil fuels stimulate biofuels?," Ecological Economics, Elsevier, vol. 70(12), pages 2400-2415.
    69. Mekbib G. Haile & Matthias Kalkuhl & Joachim Braun, 2014. "Inter- and intra-seasonal crop acreage response to international food prices and implications of volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 45(6), pages 693-710, November.
    70. Yu, Lean & Liang, Shaodong & Chen, Rongda & Lai, Kin Keung, 2022. "Predicting monthly biofuel production using a hybrid ensemble forecasting methodology," International Journal of Forecasting, Elsevier, vol. 38(1), pages 3-20.
    71. Haile, Mekbib G. & Kalkuhl, Matthias & Braun, Joachim von, 2013. "How does food supply respond to high and volatile international food prices? An empirical evaluation of inter- and intra- seasonal global crop acreage response," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161472, African Association of Agricultural Economists (AAAE).
    72. Cui, Jingbo & Martin, Jeremy I., 2017. "Impacts of US biodiesel mandates on world vegetable oil markets," Energy Economics, Elsevier, vol. 65(C), pages 148-160.

  47. Cororaton, Caesar B. & Timilsina, Govinda R. & Mevel, Simon, 2010. "Impacts Of Large Scale Expansion Of Biofuels On Global Poverty And Income Distribution," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91279, International Agricultural Trade Research Consortium.

    Cited by:

    1. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2013. "Impacts of Ethanol Policy on Corn Prices: A Review and Meta-Analysis of Recent Evidence," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149940, Agricultural and Applied Economics Association.
    2. Pena-Levano, Luis M & Rasetti, Michele & Melo, Grace, 2016. "Interaction of biofuel, food security, indirect land use change and greenhouse mitigation policies in the European Union," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236075, Agricultural and Applied Economics Association.
    3. Deppermann, Andre & Offermann, Frank & Grethe, Harald, 2014. "Income effects of EU biofuel policies in Germany," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182803, European Association of Agricultural Economists.
    4. Deppermann, Andre & Offermann, Frank & Puttkammer, Judith & Grethe, Harald, 2016. "EU biofuel policies: Income effects and lobbying decisions in the German agricultural sector," Renewable Energy, Elsevier, vol. 87(P1), pages 259-265.
    5. Estrades, Carmen & Laborde, David, 2012. "Biofuel policies and the poor: an assessment of the impact of EU biofuel policies on food consumption and poverty in developing countries applying MIRAGE," Conference papers 332239, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Miranda, Mario J. & Farrin, Kathleen M. & Larson, Donald F. & Chen, Shu-Ling, 2013. "Differential Effects of Food Security Policies on Subsistence Farmers and the Urban Poor," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149736, Agricultural and Applied Economics Association.
    7. Ehsanreza Sajedinia & Wallace E. Tyner, 2021. "Use of General Equilibrium Models in Evaluating Biofuels Policies," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 14, pages 437-465, World Scientific Publishing Co. Pte. Ltd..
    8. Sajedinia, Ehsanreza & Tyner, Wally, 2017. "Use of General Equilibrium Models in Evaluating Biofuels Policies," Conference papers 332885, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.

  48. Timilsina, Govinda R. & Shrestha, Ashish, 2010. "Biofuels : markets, targets and impacts," Policy Research Working Paper Series 5364, The World Bank.

    Cited by:

    1. Giovannetti, Giorgia & Ticci, Elisa, 2016. "Determinants of biofuel-oriented land acquisitions in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 678-687.
    2. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2013. "Impacts of Ethanol Policy on Corn Prices: A Review and Meta-Analysis of Recent Evidence," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149940, Agricultural and Applied Economics Association.
    3. Kuhn, Arnim & Endeshaw, Kassahun, 2015. "Trends and Drivers of Crop Biomass Demand: Sub-Saharan Africa vs the Rest of the World," Discussion Papers 212930, University of Bonn, Institute for Food and Resource Economics.
    4. Wydra, Sven, 2015. "Challenges for technology diffusion policy to achieve socio-economic goals," Technology in Society, Elsevier, vol. 41(C), pages 76-90.
    5. Karel Janda & Ladislav Kristoufek & David Zilberman, 2011. "Modeling the Environmental and Socio-Economic Impacts of Biofuels," Working Papers IES 2011/33, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Oct 2011.
    6. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Global biofuel production and poverty in China," Applied Energy, Elsevier, vol. 98(C), pages 246-255.
    7. Simon Mevel & Ashish Shrestha & Govinda Timilsina, 2011. "Oil price, biofuels and food supply," Post-Print hal-01884880, HAL.
    8. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    9. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Biofuels and the poor: Global impact pathways of biofuels on agricultural markets," Food Policy, Elsevier, vol. 37(4), pages 439-451.
    10. Philip Abbott, 2014. "Biofuels, Binding Constraints, and Agricultural Commodity Price Volatility," NBER Chapters, in: The Economics of Food Price Volatility, pages 91-131, National Bureau of Economic Research, Inc.
    11. Timilsina , Govinda R. & Mevel, Simon, 2011. "Biofuels and climate change mitigation : a CGE analysis incorporating land-use change," Policy Research Working Paper Series 5672, The World Bank.
    12. McPhail, Lihong Lu, 2011. "Assessing the impact of US ethanol on fossil fuel markets: A structural VAR approach," Energy Economics, Elsevier, vol. 33(6), pages 1177-1185.
    13. Nicholas Apergis & Sofia Eleftheriou & Dimitrios Voliotis, 2017. "Asymmetric Spillover Effects between Agricultural Commodity Prices and Biofuel Energy Prices," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 166-177.
    14. Massa, Isabella, 2015. "Technological change in developing countries: Trade-offs between economic, social, and environmental sustainability," MERIT Working Papers 2015-051, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    15. Ghoddusi, Hamed, 2017. "Price risks for biofuel producers in a deregulated market," Renewable Energy, Elsevier, vol. 114(PB), pages 394-407.
    16. Santamaría, Marta & Azqueta, Diego, 2015. "Promoting biofuels use in Spain: A cost-benefit analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1415-1424.
    17. Janda, Karel & Kristoufek, Ladislav & Zilberman, David, "undated". "Biofuels: review of policies and impacts," CUDARE Working Papers 120415, University of California, Berkeley, Department of Agricultural and Resource Economics.
    18. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    19. Iyabo Adeola Olanrele & Adedoyin I. Lawal & Ezekiel Oseni & Ahmed Oluwatobi Adekunle & Bukola, B. Lawal-Adedoyin & Crystal O. Elleke & Racheal Ojeka-John & Henry Nweke-Love, 2020. "Accessing the Impacts of Contemporary Development in Biofuel on Agriculture, Energy and Domestic Economy: Evidence from Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 469-478.
    20. Timilsina, Govinda R. & Csordás, Stefan & Mevel, Simon, 2011. "When does a carbon tax on fossil fuels stimulate biofuels?," Ecological Economics, Elsevier, vol. 70(12), pages 2400-2415.
    21. Kurt Azevedo & Daniel B. Olsen, 2018. "System engineering risk analysis of diesel engine durability in Latin America," Systems Engineering, John Wiley & Sons, vol. 21(4), pages 345-357, July.

  49. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R, 2010. "Second-generation biofuels : economics and policies," Policy Research Working Paper Series 5406, The World Bank.

    Cited by:

    1. Debnath, Chandrani & Bandyopadhyay, Tarun Kanti & Bhunia, Biswanath & Mishra, Umesh & Narayanasamy, Selvaraju & Muthuraj, Muthusivaramapandian, 2021. "Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    3. Alessandro Suardi & Simone Bergonzoli & Vincenzo Alfano & Antonio Scarfone & Luigi Pari, 2019. "Economic Distance to Gather Agricultural Residues from the Field to the Integrated Biomass Logistic Centre: A Spanish Case-Study," Energies, MDPI, vol. 12(16), pages 1-14, August.
    4. Moncada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2017. "Exploring path dependence, policy interactions, and actor behavior in the German biodiesel supply chain," Applied Energy, Elsevier, vol. 195(C), pages 370-381.
    5. Doshi, Amar & Pascoe, Sean & Coglan, Louisa & Rainey, Thomas J., 2016. "Economic and policy issues in the production of algae-based biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 329-337.
    6. Valeria Costantini & Francesco Crespi & Ylenia Curci, 2014. "A keyword selection method for mapping technological knowledge in specific sectors through patent data:the case of biofuels sector," SEEDS Working Papers 1714, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2014.
    7. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
    8. Janda, Karel & Benes, Ondrej, 2022. "Biofuel Technologies and Policies," EconStor Preprints 249711, ZBW - Leibniz Information Centre for Economics.
    9. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    10. Brutschin, Elina & Fleig, Andreas, 2018. "Geopolitically induced investments in biofuels," Energy Economics, Elsevier, vol. 74(C), pages 721-732.
    11. Sofia Nordqvist & Johan Frishammar, 2019. "Knowledge types to progress the development of sustainable technologies: a case study of Swedish demonstration plants," International Entrepreneurship and Management Journal, Springer, vol. 15(1), pages 75-95, March.
    12. Chakravorty, Ujjayant & Hubert, Marie-Helene & Ural Marchand, Beyza, 2018. "Food for Fuel: The Effect of the US Biofuel Mandate on Poverty in India," IZA Discussion Papers 11784, Institute of Labor Economics (IZA).
    13. Golecha, Rajdeep & Gan, Jianbang, 2016. "Effects of corn stover year-to-year supply variability and market structure on biomass utilization and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 34-44.
    14. Lozano-García, Diego Fabián & Santibañez-Aguilar, José Ezequiel & Lozano, Francisco J. & Flores-Tlacuahuac, Antonio, 2020. "GIS-based modeling of residual biomass availability for energy and production in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    15. Ghafoor, Abdul & Rehman, Tanzeel ur & Munir, Anjum & Ahmad, Manzoor & Iqbal, Muhammad, 2016. "Current status and overview of renewable energy potential in Pakistan for continuous energy sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1332-1342.
    16. Raslavičius, Laurencas, 2012. "Renewable energy sector in Belarus: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5399-5413.
    17. Salles-Filho, Sergio Luiz Monteiro & Castro, Paula Felício Drummond de & Bin, Adriana & Edquist, Charles & Ferro, Ana Flávia Portilho & Corder, Solange, 2017. "Perspectives for the Brazilian bioethanol sector: The innovation driver," Energy Policy, Elsevier, vol. 108(C), pages 70-77.
    18. Loureiro, Maria L. & Labandeira, Xavier & Hanemann, Michael, 2013. "Transport and low-carbon fuel: A study of public preferences in Spain," Energy Economics, Elsevier, vol. 40(S1), pages 126-133.
    19. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    20. Adenle, Ademola A. & Haslam, Gareth E. & Lee, Lisa, 2013. "Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries," Energy Policy, Elsevier, vol. 61(C), pages 182-195.
    21. Rincón, L.E. & Jaramillo, J.J. & Cardona, C.A., 2014. "Comparison of feedstocks and technologies for biodiesel production: An environmental and techno-economic evaluation," Renewable Energy, Elsevier, vol. 69(C), pages 479-487.
    22. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    23. Bhavik Bakshi & Nathan Cruze & Tim Haab & Matthew Winden, 2013. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Working Papers 13-02, UW-Whitewater, Department of Economics.
    24. Palage, Kristoffer & Lundmark, Robert & Söderholm, Patrik, 2019. "The impact of pilot and demonstration plants on innovation: The case of advanced biofuel patenting in the European Union," International Journal of Production Economics, Elsevier, vol. 210(C), pages 42-55.
    25. Duarte Souza Alvarenga Santos, Nathália & Rückert Roso, Vinícius & Teixeira Malaquias, Augusto César & Coelho Baêta, José Guilherme, 2021. "Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    26. Andres Quintero, Julian & Ruth Felix, Erika & Eduardo Rincón, Luis & Crisspín, Marianella & Fernandez Baca, Jaime & Khwaja, Yasmeen & Cardona, Carlos Ariel, 2012. "Social and techno-economical analysis of biodiesel production in Peru," Energy Policy, Elsevier, vol. 43(C), pages 427-435.
    27. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    28. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    29. Eggert, Håkan & Greaker, Mads & Potter, Emily, 2011. "Policies for Second Generation Biofuels: Current status and future challenges," Working Papers in Economics 501, University of Gothenburg, Department of Economics.
    30. Kamal Soundararajan & Elspeth Thomson, 2013. "Asia and European transport biofuels stalled at the same place?," Asia Europe Journal, Springer, vol. 11(3), pages 247-263, September.
    31. Alejandro Ortega & Konstantinos Gkoumas & Anastasios Tsakalidis & Ferenc Pekár, 2021. "Low-Emission Alternative Energy for Transport in the EU: State of Play of Research and Innovation," Energies, MDPI, vol. 14(22), pages 1-22, November.
    32. Tomasz Bochenski & Tanmay Chaturvedi & Mette Hedegaard Thomsen & Jens Ejbye Schmidt, 2019. "Evaluation of Marine Synechococcus for an Algal Biorefinery in Arid Regions," Energies, MDPI, vol. 12(12), pages 1-13, June.
    33. Moschini, Giancarlo & Cui, Jingbo & Lapan, Harvey, 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," ISU General Staff Papers 201201010800001094, Iowa State University, Department of Economics.
    34. Pour, Nasim & Webley, Paul A. & Cook, Peter J., 2018. "Opportunities for application of BECCS in the Australian power sector," Applied Energy, Elsevier, vol. 224(C), pages 615-635.
    35. Lixia H. Lambert & Eric A. DeVuyst & Burton C. English & Rodney Holcomb, 2021. "Analyzing the Trade-Offs between Meeting Biorefinery Production Capacity and Feedstock Supply Cost: A Chance Constrained Approach," Energies, MDPI, vol. 14(16), pages 1-13, August.
    36. Renzaho, Andre M.N. & Kamara, Joseph K. & Toole, Michael, 2017. "Biofuel production and its impact on food security in low and middle income countries: Implications for the post-2015 sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 503-516.
    37. Paula Kurzawska & Remigiusz Jasiński, 2021. "Overview of Sustainable Aviation Fuels with Emission Characteristic and Particles Emission of the Turbine Engine Fueled ATJ Blends with Different Percentages of ATJ Fuel," Energies, MDPI, vol. 14(7), pages 1-18, March.
    38. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2023. "Optimizing utilization pathways for biomass to chemicals and energy by integrating emergy analysis and particle swarm optimization (PSO)," Renewable Energy, Elsevier, vol. 202(C), pages 1448-1459.
    39. Ujjayant Chakravorty & Marie-Hélène Hubert & Beyza Ural Marchand, 2016. "The effect of the US biofuels mandate on poverty in India," Economics Working Paper Archive (University of Rennes 1 & University of Caen) 2016-13, Center for Research in Economics and Management (CREM), University of Rennes 1, University of Caen and CNRS.
    40. Dumortier, Jerome, 2014. "Impact of different bioenergy crop yield estimates on the cellulosic ethanol feedstock mix," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 171168, Agricultural and Applied Economics Association.
    41. Luis Rivera-González & David Bolonio & Luis F. Mazadiego & Sebastián Naranjo-Silva & Kenny Escobar-Segovia, 2020. "Long-Term Forecast of Energy and Fuels Demand Towards a Sustainable Road Transport Sector in Ecuador (2016–2035): A LEAP Model Application," Sustainability, MDPI, vol. 12(2), pages 1-26, January.
    42. Serafin Corral & David Romero Manrique de Lara & Marisa Tejedor Salguero & Carmen Concepción Jimenez Mendoza & David Legna-de la Nuez & María Dorta Santos & Francisco Díaz Peña, 2016. "Assessing Jatropha Crop Production Alternatives in Abandoned Agricultural Arid Soils Using MCA and GIS," Sustainability, MDPI, vol. 8(6), pages 1-16, May.
    43. Lucas Reijnders, 2013. "Lipid‐based liquid biofuels from autotrophic microalgae: energetic and environmental performance," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 2(1), pages 73-85, January.
    44. Bardhan, Soubhik K. & Gupta, Shelaka & Gorman, M.E. & Haider, M. Ali, 2015. "Biorenewable chemicals: Feedstocks, technologies and the conflict with food production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 506-520.
    45. Bryngemark, Elina, 2019. "Second generation biofuels and the competition for forest raw materials: A partial equilibrium analysis of Sweden," Forest Policy and Economics, Elsevier, vol. 109(C).
    46. Sharma, Bijay P. & Yu, T. Edward & English, Burton C. & Boyer, Christopher N. & Larson, James A., 2020. "Impact of government subsidies on a cellulosic biofuel sector with diverse risk preferences toward feedstock uncertainty," Energy Policy, Elsevier, vol. 146(C).
    47. Li, Qi & Hu, Guiping, 2014. "Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification," Energy, Elsevier, vol. 74(C), pages 576-584.
    48. Eggert, HÃ¥kan & Greaker, Mads, 2013. "Promoting Second Generation Biofuels: Does the First Generation Pave the Road?," RFF Working Paper Series dp-13-18-efd, Resources for the Future.
    49. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    50. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    51. Smith, A.L. & Klenk, N. & Wood, S. & Hewitt, N. & Henriques, I. & Yan, N. & Bazely, D.R., 2013. "Second generation biofuels and bioinvasions: An evaluation of invasive risks and policy responses in the United States and Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 30-42.
    52. Liang, Yuanyuan & Yu, Biying & Wang, Lu, 2019. "Costs and benefits of renewable energy development in China's power industry," Renewable Energy, Elsevier, vol. 131(C), pages 700-712.
    53. Bengtsson, Selma & Fridell, Erik & Andersson, Karin, 2012. "Environmental assessment of two pathways towards the use of biofuels in shipping," Energy Policy, Elsevier, vol. 44(C), pages 451-463.
    54. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    55. Janda, Karel & Kristoufek, Ladislav & Zilberman, David, "undated". "Biofuels: review of policies and impacts," CUDARE Working Papers 120415, University of California, Berkeley, Department of Agricultural and Resource Economics.
    56. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    57. Fahd, S. & Fiorentino, G. & Mellino, S. & Ulgiati, S., 2012. "Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept," Energy, Elsevier, vol. 37(1), pages 79-93.
    58. Santos Equihua, Yéssica Yasmín & Espitia Moreno, Irma Cristina, 2017. "Análisis comparativo de la influencia de los factores de eficiencia en la producción de biodiesel a partir de desechos de grasas animales y aceites vegetales," Revista Nicolaita de Estudios Económicos, Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Económicas y Empresariales, vol. 12(1), pages 30-46.
    59. Karel Janda & Ladislav Kristoufek & David Zilberman, 2012. "Biofuels: policies and impacts," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 58(8), pages 372-386.
    60. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part I," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1427-1445.
    61. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.
    62. Schillo, R. Sandra & Isabelle, Diane A. & Shakiba, Abtin, 2017. "Linking advanced biofuels policies with stakeholder interests: A method building on Quality Function Deployment," Energy Policy, Elsevier, vol. 100(C), pages 126-137.
    63. Christensen, Adam & Siddiqui, Sauleh, 2015. "Fuel price impacts and compliance costs associated with the Renewable Fuel Standard (RFS)," Energy Policy, Elsevier, vol. 86(C), pages 614-624.
    64. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    65. Jason P. H. Jones & Zidong M. Wang & Bruce A. McCarl & Minglu Wang, 2017. "Policy Uncertainty and the US Ethanol Industry," Sustainability, MDPI, vol. 9(11), pages 1-14, November.
    66. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    67. Ji, Xi & Long, Xianling, 2016. "A review of the ecological and socioeconomic effects of biofuel and energy policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 41-52.
    68. Raeisossadati, Mohammadjavad & Moheimani, Navid Reza & Parlevliet, David, 2019. "Luminescent solar concentrator panels for increasing the efficiency of mass microalgal production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 47-59.
    69. Winchester, Niven & Malina, Robert & Staples, Mark & Barrett, Steven, 2015. "The Impact of Advanced Biofuels on Aviation Emissions and Operations in the U.S," Conference papers 332639, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    70. Corral, Serafín & Legna-de la Nuez, David & Romero-Manrique de Lara, David, 2015. "Integrated assessment of biofuel production in arid lands: Jatropha cultivation on the island of Fuerteventura," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 41-53.
    71. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    72. Osmani, Atif & Zhang, Jun, 2013. "Stochastic optimization of a multi-feedstock lignocellulosic-based bioethanol supply chain under multiple uncertainties," Energy, Elsevier, vol. 59(C), pages 157-172.
    73. Nida Khan & Kumarasamy Sudhakar & Rizalman Mamat, 2021. "Role of Biofuels in Energy Transition, Green Economy and Carbon Neutrality," Sustainability, MDPI, vol. 13(22), pages 1-30, November.
    74. van Eijck, Janske & Batidzirai, Bothwell & Faaij, André, 2014. "Current and future economic performance of first and second generation biofuels in developing countries," Applied Energy, Elsevier, vol. 135(C), pages 115-141.
    75. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    76. Dumortier, Jerome, 2015. "Impact of agronomic uncertainty in biomass production and endogenous commodity prices on cellulosic biofuel feedstock composition," IU SPEA AgEcon Papers 198707, Indiana University, IU School of Public and Environmental Affairs.
    77. Das, Manali & Patra, Pradipta & Ghosh, Amit, 2020. "Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    78. Aui, Alvina & Wang, Yu, 2022. "Post-RFS supports for cellulosic ethanol: Evaluation of economic and environmental impacts of alternative policies," Energy Policy, Elsevier, vol. 170(C).

  50. van Kooten, G. Cornelis & Timilsina, Govinda R., 2009. "Wind power development : economics and policies," Policy Research Working Paper Series 4868, The World Bank.

    Cited by:

    1. Stua, Michele, 2013. "Evidence of the clean development mechanism impact on the Chinese electric power system's low-carbon transition," Energy Policy, Elsevier, vol. 62(C), pages 1309-1319.
    2. G. Cornelis van Kooten, 2009. "Wind Power: The Economic Impact of Intermittency," Working Papers 2009-04, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    3. van Kooten, G. Cornelis & Wong, Linda, 2009. "Economic Aspects of Wind Power Generation in Developing Countries," Working Papers 54706, University of Victoria, Resource Economics and Policy.
    4. MILE 09, Maria Anna Corvaglia, 2013. "South-South Technology Transfer Addressing Climate Change: The Emerging Role of Developing Countries in the Global Climate Governance," Papers 474, World Trade Institute.
    5. van Kooten, G. Cornelis & Wong, Linda, 2010. "Economics of wind power when national grids are unreliable," Energy Policy, Elsevier, vol. 38(4), pages 1991-1998, April.

  51. Anas, Alex & Timilsina, Govinda R. & Zheng, Siqi, 2009. "An analysis of various policy instruments to reduce congestion, fuel consumption and CO2 emissions in Beijing," Policy Research Working Paper Series 5068, The World Bank.

    Cited by:

    1. Hala Abou- Ali & Alban Thomas, 2012. "Regulating traffic to reduce air pollution in Greater Cairo, Egypt," Chapters, in: Hala Abou-Ali (ed.), Economic Incentives and Environmental Regulation, chapter 5, pages 95-119, Edward Elgar Publishing.
    2. Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris & Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris, 2015. "Transport policies and development," Policy Research Working Paper Series 7366, The World Bank.
    3. Yoshida, Jun & Kono, Tatsuhito, 2020. "Optimal Car-related Taxes and Pricing in Beijing Considering the Marginal Cost of Public Funds," MPRA Paper 101728, University Library of Munich, Germany.
    4. Li, Pei & Lu, Yi & Wang, Jin, 2020. "The effects of fuel standards on air pollution: Evidence from China," Journal of Development Economics, Elsevier, vol. 146(C).
    5. Ioannis Tikoudis & Walid Oueslati, 2023. "The future of transport-related emissions in dense urban areas: an analysis of various policy scenarios with MOLES," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 25(2), pages 205-268, April.
    6. Parry, Ian W.H. & Timilsina, Govinda R., 2012. "Demand side instruments to reduce road transportation externalities in the greater Cairo metropolitan area," Policy Research Working Paper Series 6083, The World Bank.
    7. Anas, Alex & Timilsina, Govinda R., 2015. "Offsetting the CO2 locked-in by roads: Suburban transit and core densification as antidotes," Economics of Transportation, Elsevier, vol. 4(1), pages 37-49.
    8. Siqi Zheng & Matthew E. Kahn, 2013. "Understanding China's Urban Pollution Dynamics," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 731-772, September.

  52. Timilsina, Govinda R. & Dulal, Hari B., 2009. "A review of regulatory instruments to control environmental externalities from the transport sector," Policy Research Working Paper Series 4867, The World Bank.

    Cited by:

    1. Blackman, Allen & Osakwe, Rebecca & Alpizar, Francisco, 2010. "Fuel tax incidence in developing countries: The case of Costa Rica," Energy Policy, Elsevier, vol. 38(5), pages 2208-2215, May.
    2. Hala Abou- Ali & Alban Thomas, 2012. "Regulating traffic to reduce air pollution in Greater Cairo, Egypt," Chapters, in: Hala Abou-Ali (ed.), Economic Incentives and Environmental Regulation, chapter 5, pages 95-119, Edward Elgar Publishing.
    3. Perkins, Richard & Neumayer, Eric, 2012. "Does the ‘California effect’ operate across borders? trading- and investing-up in automobile emission standards," LSE Research Online Documents on Economics 42097, London School of Economics and Political Science, LSE Library.
    4. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I., 2012. "Review on fuel economy standard and label for vehicle in selected ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1683-1695.
    5. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    6. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.
    7. David Anthoff & Robert Hahn, 2010. "Government failure and market failure: on the inefficiency of environmental and energy policy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 197-224, Summer.

  53. Anas, Alex & Timilsina, Govinda R., 2009. "Lock-in effects of road expansion on CO2 emissions : results from a core-periphery model of Beijing," Policy Research Working Paper Series 5017, The World Bank.

    Cited by:

    1. Framstad, Nils Chr. & Strand, Jon, 2015. "Energy intensive infrastructure investments with retrofits in continuous time: Effects of uncertainty on energy use and carbon emissions," Resource and Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    2. Beaudoin, Justin & Lin Lawell, C.-Y. Cynthia, 2018. "The effects of public transit supply on the demand for automobile travel," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 447-467.
    3. Parry, Ian W.H. & Timilsina, Govinda R., 2012. "Demand side instruments to reduce road transportation externalities in the greater Cairo metropolitan area," Policy Research Working Paper Series 6083, The World Bank.
    4. Anas, Alex & Timilsina, Govinda R., 2015. "Offsetting the CO2 locked-in by roads: Suburban transit and core densification as antidotes," Economics of Transportation, Elsevier, vol. 4(1), pages 37-49.

  54. Anas, Alex & Timilsina, Govinda R., 2009. "Impacts of policy instruments to reduce congestion and emissions from urban transportation : the case of Sao Paulo, Brazil," Policy Research Working Paper Series 5099, The World Bank.

    Cited by:

    1. Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris & Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris, 2015. "Transport policies and development," Policy Research Working Paper Series 7366, The World Bank.
    2. Parry, Ian W.H. & Timilsina, Govinda R., 2012. "Demand side instruments to reduce road transportation externalities in the greater Cairo metropolitan area," Policy Research Working Paper Series 6083, The World Bank.
    3. Rivasplata, Charles R., 2013. "Congestion pricing for Latin America: Prospects and constraints," Research in Transportation Economics, Elsevier, vol. 40(1), pages 56-65.
    4. Fan, Jin & He, Haonan & Wu, Yanrui, 2016. "Personal carbon trading and subsidies for hybrid electric vehicles," Economic Modelling, Elsevier, vol. 59(C), pages 164-173.

  55. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2009. "On interfuel substitution : some international evidence," Policy Research Working Paper Series 5026, The World Bank.

    Cited by:

    1. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    2. Kodjovi EKLOU & Stefania FABRIZIO & Roland Kangni KPODAR, 2019. "Export competitiveness - Fuel Price nexus in Developing Countries: Real or False Concern?," Working Papers P249, FERDI.
    3. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    4. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
    5. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
    6. Lin, Boqiang & Ahmad, Izhar, 2016. "Energy substitution effect on transport sector of Pakistan based on trans-log production function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1182-1193.
    7. Ravago, Majah-Leah V. & Fabella, Raul V. & Jandoc, Karl Robert L. & Frias, Renzi G. & Magadia, J. Kathleen P., 2021. "Gauging the market potential for natural gas among Philippine manufacturing firms," Energy, Elsevier, vol. 237(C).
    8. Surender Kumar & Hidemichi Fujii & Shunsuke Managi, 2014. "Substitute or complement? Assessing renewable and non-renewable energy in OCED countries," Working Papers SDES-2014-8, Kochi University of Technology, School of Economics and Management, revised Oct 2014.
    9. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    10. Thomas Michielsen, 2013. "Brown Backstops Versus the Green Paradox," OxCarre Working Papers 108, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    11. Cohen, Gail & Joutz, Frederick & Loungani, Prakash, 2011. "Measuring energy security: Trends in the diversification of oil and natural gas supplies," Energy Policy, Elsevier, vol. 39(9), pages 4860-4869, September.
    12. Lin, Boqiang & Atsagli, Philip, 2017. "Inter-fuel substitution possibilities in South Africa: A translog production function approach," Energy, Elsevier, vol. 121(C), pages 822-831.
    13. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
    14. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    15. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.

  56. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2009. "Energy demand models for policy formulation : a comparative study of energy demand models," Policy Research Working Paper Series 4866, The World Bank.

    Cited by:

    1. Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Widodo, Tri & Fitrady, Ardyanto & Alim Rosyadi, Saiful & Erdyas Bimanatya, Traheka, 2018. "A Long-Run Estimation of Natural Gas Demand in Indonesian Manufacturing Sector: Computable General Equilibrium Model Approach," MPRA Paper 86887, University Library of Munich, Germany.
    3. Azam Chaudhry, 2010. "A Panel Data Analysis of Electricity Demand in Pakistan," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 15(Special E), pages 75-106, September.
    4. Andrew Jobling & Tooraj Jamasb, 2015. "Price Volatility and Demand for Oil: A Comparative Analysis of Developed and Developing Countries," Working Papers EPRG 1507, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    5. Sarnai Battulga & Shobhakar Dhakal, 2023. "Energy Demand Modeling for the Transition of a Coal-Dependent City to a Low-Carbon City: The Case of Ulaanbaatar City," Energies, MDPI, vol. 16(17), pages 1-17, August.
    6. Keirstead, James & Jennings, Mark & Sivakumar, Aruna, 2012. "A review of urban energy system models: Approaches, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3847-3866.
    7. Wood, Michael & Alsayegh, Osamah A., 2014. "Impact of oil prices, economic diversification policies and energy conservation programs on the electricity and water demands in Kuwait," Energy Policy, Elsevier, vol. 66(C), pages 144-156.
    8. Fakhri J. Hasanov & Jeyhun I. Mikayilov, 2020. "Revisiting Energy Demand Relationship: Theory and Empirical Application," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    9. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
    10. Chang, Yusang & Lee, Jinsoo & Yoon, Hyerim, 2012. "Alternative projection of the world energy consumption-in comparison with the 2010 international energy outlook," Energy Policy, Elsevier, vol. 50(C), pages 154-160.
    11. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Ethanol demand in Brazil: Regional approach," Energy Policy, Elsevier, vol. 39(5), pages 2289-2298, May.
    12. Ebenezer Megbowon & Peter Mukarumbwa & Sola Ojo & Olawuyi Seyi Olalekan, 2018. "Household Cooking Energy Situation in Nigeria: Insight from Nigeria Malaria Indicator Survey 2015," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 284-291.
    13. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    14. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    15. Mir Hossein Mousavi, 2015. "An Estimation of Natural Gas Demand in Household Sector of Iran; the Structural Time Series Approach," Proceedings of International Academic Conferences 2804383, International Institute of Social and Economic Sciences.
    16. Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
    17. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series wp-2017-56, World Institute for Development Economic Research (UNU-WIDER).
    18. Athanasios Anagnostis & Elpiniki Papageorgiou & Dionysis Bochtis, 2020. "Application of Artificial Neural Networks for Natural Gas Consumption Forecasting," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    19. Igbal Guliyev & Igor Litvinyuk, 2017. "Issues for Long-range Projection of International Energy Markets through the Prism of Sustainable Development," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 296-303.
    20. Wadud, Zia & Dey, Himadri S. & Kabir, Md. Ashfanoor & Khan, Shahidul I., 2011. "Modeling and forecasting natural gas demand in Bangladesh," Energy Policy, Elsevier, vol. 39(11), pages 7372-7380.
    21. Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
    22. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2013. "Evaluating the direct and indirect rebound effects in household energy consumption behavior: A case study of Beijing," Energy Policy, Elsevier, vol. 57(C), pages 441-453.
    23. Theofano Fotiou & Alessia de Vita & Pantelis Capros, 2019. "Economic-Engineering Modelling of the Buildings Sector to Study the Transition towards Deep Decarbonisation in the EU," Energies, MDPI, vol. 12(14), pages 1-28, July.
    24. Siddique, Muhammad Bilal & Bergaentzlé, Claire & Gunkel, Philipp Andreas, 2022. "Fine-tuning energy efficiency subsidies allocation for maximum savings in residential buildings," Energy, Elsevier, vol. 258(C).
    25. -, 2011. "An assessment of the economic impact of climate change on the Energy Sector in Trinidad and Tobago," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38584, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    26. Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
    27. Nsabimana, Aimable & Rukundo, Bosco Johnson & Mukamugema, Alice & Ngabitsinze, Jean Chrysostome, 2022. "Residential energy demands in Rwanda: Evidence from Robust models," Energy Policy, Elsevier, vol. 160(C).
    28. Tatiana Mitrova & Vyacheslav Kulagin & Dmitry Grushevenko & Ekaterina Grushevenko, 2015. "Technological Innovation as a Factor of Demand for Energy Sources in Automotive Industry," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 9(4), pages 18-31.
    29. Arora, Vipin, 2013. "Comparisons of Chinese and Indian Energy Consumption Forecasting Models," MPRA Paper 48621, University Library of Munich, Germany.
    30. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
    31. Chaudry, Modassar & Jayasuriya, Lahiru & Blainey, Simon & Lovric, Milan & Hall, Jim W. & Russell, Tom & Jenkins, Nick & Wu, Jianzhong, 2022. "The implications of ambitious decarbonisation of heat and road transport for Britain’s net zero carbon energy systems," Applied Energy, Elsevier, vol. 305(C).
    32. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    33. Khan, Muhammad Arshad, 2015. "Modelling and forecasting the demand for natural gas in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1145-1159.
    34. Indranarain Ramlall, 2012. "Modelling Non-Renewable Energy in Mauritius: In Quest for Sustainable Policies towards a Greener Economy," International Journal of Energy Economics and Policy, Econjournals, vol. 2(3), pages 123-133.
    35. Mori, Keibun, 2012. "Modeling the impact of a carbon tax: A trial analysis for Washington State," Energy Policy, Elsevier, vol. 48(C), pages 627-639.
    36. Parajuli, Ranjan & Østergaard, Poul Alberg & Dalgaard, Tommy & Pokharel, Govind Raj, 2014. "Energy consumption projection of Nepal: An econometric approach," Renewable Energy, Elsevier, vol. 63(C), pages 432-444.
    37. Zachariadis, Theodoros & Taibi, Emanuele, 2015. "Exploring drivers of energy demand in Cyprus – Scenarios and policy options," Energy Policy, Elsevier, vol. 86(C), pages 166-175.
    38. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
    39. Eggimann, Sven & Hall, Jim W. & Eyre, Nick, 2019. "A high-resolution spatio-temporal energy demand simulation to explore the potential of heating demand side management with large-scale heat pump diffusion," Applied Energy, Elsevier, vol. 236(C), pages 997-1010.
    40. Iddrisu, Insah & Bhattacharyya, Subhes C., 2015. "Ghana׳s bioenergy policy: Is 20% biofuel integration achievable by 2030?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 32-39.
    41. Dhakouani, Asma & Znouda, Essia & Bouden, Chiheb, 2019. "Impacts of energy efficiency policies on the integration of renewable energy," Energy Policy, Elsevier, vol. 133(C).
    42. Pye, Steve & Usher, Will & Strachan, Neil, 2014. "The uncertain but critical role of demand reduction in meeting long-term energy decarbonisation targets," Energy Policy, Elsevier, vol. 73(C), pages 575-586.
    43. Li, Raymond & Woo, Chi-Keung & Tishler, Asher & Zarnikau, Jay, 2022. "How price responsive is industrial demand for natural gas in the United States?," Utilities Policy, Elsevier, vol. 74(C).
    44. Ackah, Ishmael, 2015. "Accounting for the effect of exogenous non-Economic variables on natural gas demand in oil producing African countries," MPRA Paper 81553, University Library of Munich, Germany.
    45. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    46. Ackah, Ishmael, 2017. "Analysis OF Energy Efficiency Practices of SMEs in Ghana: An application of Product Generational Dematerialisation," MPRA Paper 77484, University Library of Munich, Germany.
    47. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    48. Letnik, Tomislav & Marksel, Maršenka & Luppino, Giuseppe & Bardi, Andrea & Božičnik, Stane, 2018. "Review of policies and measures for sustainable and energy efficient urban transport," Energy, Elsevier, vol. 163(C), pages 245-257.
    49. Andante Hadi Pandyaswargo & Mengyi Ruan & Eiei Htwe & Motoshi Hiratsuka & Alan Dwi Wibowo & Yuji Nagai & Hiroshi Onoda, 2020. "Estimating the Energy Demand and Growth in Off-Grid Villages: Case Studies from Myanmar, Indonesia, and Laos," Energies, MDPI, vol. 13(20), pages 1-22, October.
    50. Martínez-Jaramillo, Juan Esteban & Arango-Aramburo, Santiago & Álvarez-Uribe, Karla C. & Jaramillo-Álvarez, Patricia, 2017. "Assessing the impacts of transport policies through energy system simulation: The case of the Medellin Metropolitan Area, Colombia," Energy Policy, Elsevier, vol. 101(C), pages 101-108.
    51. Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
    52. Pukšec, Tomislav & Mathiesen, Brian Vad & Novosel, Tomislav & Duić, Neven, 2014. "Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia," Energy, Elsevier, vol. 76(C), pages 198-209.
    53. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    54. Atul Anand & L. Suganthi, 2017. "Forecasting of Electricity Demand by Hybrid ANN-PSO Models," International Journal of Energy Optimization and Engineering (IJEOE), IGI Global, vol. 6(4), pages 66-83, October.
    55. Kuchler, Magdalena & Höök, Mikael, 2020. "Fractured visions: Anticipating (un)conventional natural gas in Poland," Resources Policy, Elsevier, vol. 68(C).
    56. Javid, Muhammad & Khan, Farzana Naheed & Arif, Umaima, 2022. "Income and price elasticities of natural gas demand in Pakistan: A disaggregated analysis," Energy Economics, Elsevier, vol. 113(C).
    57. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.

  57. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.

    Cited by:

    1. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
    2. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Applying the Theory of Consumption Values to Explain Drivers’ Willingness to Pay for Biofuels," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    3. Meiting Tu & Ye Li & Lei Bao & Yuao Wei & Olivier Orfila & Wenxiang Li & Dominique Gruyer, 2019. "Logarithmic Mean Divisia Index Decomposition of CO 2 Emissions from Urban Passenger Transport: An Empirical Study of Global Cities from 1960–2001," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    4. Liu, Yang & Wang, Yu & Huo, Hong, 2013. "Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008," Energy Policy, Elsevier, vol. 61(C), pages 544-550.
    5. Wang, Miao & Feng, Chao, 2021. "The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China's carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysi," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    6. Prapatchon Jariyapan, 2012. "Determination of transport CO2 emission using the General Method of Moments: Empirical evidence from 16 countries," The Empirical Econometrics and Quantitative Economics Letters, Faculty of Economics, Chiang Mai University, vol. 1(2), pages 1-12, June.
    7. Samir Saidi, 2021. "Freight transport and energy consumption: What impact on carbon dioxide emissions and environmental quality in MENA countries?," Economic Change and Restructuring, Springer, vol. 54(4), pages 1119-1145, November.
    8. Zhang, Wencheng & Peng, Shuijun & Sun, Chuanwang, 2015. "CO2 emissions in the global supply chains of services: An analysis based on a multi-regional input–output model," Energy Policy, Elsevier, vol. 86(C), pages 93-103.
    9. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    10. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    11. Cai, Bofeng & Yang, Weishan & Cao, Dong & Liu, Lancui & Zhou, Ying & Zhang, Zhansheng, 2012. "Estimates of China's national and regional transport sector CO2 emissions in 2007," Energy Policy, Elsevier, vol. 41(C), pages 474-483.
    12. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2013. "Indicators for sustainable energy development: A multivariate cointegration and causality analysis from Tunisian road transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 34-43.
    13. Espinosa Valderrama, Mónica & Cadena Monroy, Ángela Inés & Behrentz Valencia, Eduardo, 2019. "Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector," Energy Policy, Elsevier, vol. 124(C), pages 111-122.
    14. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    15. Rafaa Mraïhi & Riadh Harizi, 2014. "Road Freight Transport and Carbon Dioxide Emissions: Policy Options for Tunisia," Energy & Environment, , vol. 25(1), pages 79-92, February.
    16. Zhao, Jiaxin & Mattauch, Linus, 2021. "When standards have better distributional consequences than carbon taxes," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242351, Verein für Socialpolitik / German Economic Association.
    17. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2021. "Investigating the nexus among transport, economic growth and environmental degradation: Evidence from panel ARDL approach," Transport Policy, Elsevier, vol. 109(C), pages 61-71.
    18. Suyi Kim, 2019. "Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    19. Paudel, Krishna P. & Timilsina, Govinda R., 2010. "Would There Be Surplus Grains for Biofuels? An Assessment of Agro-economic Factors and Biofuel Production Potential at the Global Level," Staff Papers 113125, Louisiana State University, Department of Agricultural Economics and Agribusiness.
    20. Zhimin Peng & Qunqi Wu, 2020. "Evaluation of the relationship between energy consumption, economic growth, and CO2 emissions in China’ transport sector: the FMOLS and VECM approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6537-6561, October.
    21. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    22. Heng Li & Wei Wang, 2022. "The Road to Low Carbon: Can the Opening of High-Speed Railway Reduce the Level of Urban Carbon Emissions?," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    23. Taewook Huh & Yun Young Kim, 2021. "Triangular Trajectory of Sustainable Development: Panel Analysis of the OECD Countries," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    24. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    25. Lidia Andrés Delgado & Emilio Padilla Rosa, 2017. "Driving factors of GHG emissions in EU transport activity," Working Papers wpdea1702, Department of Applied Economics at Universitat Autonoma of Barcelona.
    26. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    27. Liao, Chun-Hsiung & Lu, Chin-Shan & Tseng, Po-Hsing, 2011. "Carbon dioxide emissions and inland container transport in Taiwan," Journal of Transport Geography, Elsevier, vol. 19(4), pages 722-728.
    28. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    29. Masato Abe, 2011. "Achieving a sustainable automotive sector in Asia and the Pacific: Challenges and opportunities for the reduction of vehicle CO2 emissions," Working Papers 10811, Asia-Pacific Research and Training Network on Trade (ARTNeT), an initiative of UNESCAP and IDRC, Canada..
    30. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    31. Rebeca Fontanilla Andong & Edsel Sajor, 2017. "Urban sprawl, public transport, and increasing CO2 emissions: the case of Metro Manila, Philippines," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 99-123, February.
    32. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
    33. Liu Yang & Yuanqing Wang & Yujun Lian & Xin Dong & Jianhong Liu & Yuanyuan Liu & Zhouhao Wu, 2023. "Rational planning strategies of urban structure, metro, and car use for reducing transport carbon dioxide emissions in developing cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6987-7010, July.
    34. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    35. Bilgili, Faik & Koçak, Emrah & Kuşkaya, Sevda & Bulut, Ümit, 2020. "Estimation of the co-movements between biofuel production and food prices: A wavelet-based analysis," Energy, Elsevier, vol. 213(C).
    36. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    37. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
    38. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    39. Solaymani, Saeed & Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah, 2015. "The impacts of climate change policies on the transportation sector," Energy, Elsevier, vol. 81(C), pages 719-728.
    40. Pappas, Dimitrios & Chalvatzis, Konstantinos J. & Guan, Dabo & Ioannidis, Alexis, 2018. "Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia," Applied Energy, Elsevier, vol. 225(C), pages 183-194.
    41. Muhammad Shafique & Anam Azam & Muhammad Rafiq & Xiaowei Luo, 2020. "Evaluating the Relationship between Freight Transport, Economic Prosperity, Urbanization, and CO 2 Emissions: Evidence from Hong Kong, Singapore, and South Korea," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    42. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Decomposition and Decoupling Analysis of Factors Affecting Carbon Emissions in China’s Regional Logistics Industry," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    43. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    44. Loan T. Le, 2016. "Biofuel Production in Vietnam: Cost-Effectiveness, Energy and GHG Balances," EEPSEA Research Report rr20160315, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2016.
    45. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    46. Orihuela, M. Pilar & Chacartegui, Ricardo & Martínez-Fernández, Julián, 2020. "New biomorphic filters to face upcoming particulate emissions policies: A review of the FIL-BIO-DIESEL project," Energy, Elsevier, vol. 201(C).
    47. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    48. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Munawar Javed Ahmad, 2021. "Examining the Factors Affecting CO2 Emissions from Road Transportation in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 152-159.
    49. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    50. Keyju Lee & Junjae Chae & Jinwoo Kim, 2019. "A Courier Service with Electric Bicycles in an Urban Area: The Case in Seoul," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    51. Jaewon Lim & DooHwan Won, 2019. "Impact of CARB’s Tailpipe Emission Standard Policy on CO 2 Reduction among the U.S. States," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
    52. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    53. Hooman Farzaneh & Jose A. Puppim de Oliveira & Benjamin McLellan & Hideaki Ohgaki, 2019. "Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits," Energies, MDPI, vol. 12(19), pages 1-17, September.
    54. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    55. Siti Indati Mustapa & Hussain Ali Bekhet, 2015. "Investigating Factors Affecting CO2 Emissions in Malaysian Road Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1073-1083.
    56. Fernando Ramos-Quintana & Héctor Sotelo-Nava & Hugo Saldarriaga-Noreña & Efraín Tovar-Sánchez, 2019. "Assessing the Environmental Quality Resulting from Damages to Human-Nature Interactions Caused by Population Increase: A Systems Thinking Approach," Sustainability, MDPI, vol. 11(7), pages 1-29, April.
    57. Hyungwoo Lim & Jaehyeok Kim & Ha-Hyun Jo, 2020. "Population Age Structure and Greenhouse Gas Emissions from Road Transportation: A Panel Cointegration Analysis of 21 OECD Countries," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    58. Wenyue Yang & Shaojian Wang & Xiaoming Zhao, 2018. "Measuring the Direct and Indirect Effects of Neighborhood-Built Environments on Travel-related CO 2 Emissions: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    59. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    60. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    61. World Bank, 2011. "Climate-Resilient Development in Vietnam," World Bank Publications - Reports 27393, The World Bank Group.
    62. Huang, Fei & Zhou, Dequn & Wang, Qunwei & Hang, Ye, 2019. "Decomposition and attribution analysis of the transport sector’s carbon dioxide intensity change in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 343-358.
    63. Junfeng Zhang & Jianxu Liu & Jing Li & Yuyan Gao & Chuansong Zhao, 2021. "Green Development Efficiency and Its Influencing Factors in China’s Iron and Steel Industry," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    64. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    65. Jing Li & Kevin Lo & Meng Guo, 2018. "Do Socio-Economic Characteristics Affect Travel Behavior? A Comparative Study of Low-Carbon and Non-Low-Carbon Shopping Travel in Shenyang City, China," IJERPH, MDPI, vol. 15(7), pages 1-11, June.
    66. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry," Energies, MDPI, vol. 15(18), pages 1-19, September.
    67. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    68. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    69. Mohmand, Yasir Tariq & Mehmood, Fahad & Mughal, Khurrum Shahzad & Aslam, Faheem, 2021. "Investigating the causal relationship between transport infrastructure, economic growth and transport emissions in Pakistan," Research in Transportation Economics, Elsevier, vol. 88(C).
    70. Saima Abdul Jabbar & Laila Tul Qadar & Sulaman Ghafoor & Lubna Rasheed & Zouina Sarfraz & Azza Sarfraz & Muzna Sarfraz & Miguel Felix & Ivan Cherrez-Ojeda, 2022. "Air Quality, Pollution and Sustainability Trends in South Asia: A Population-Based Study," IJERPH, MDPI, vol. 19(12), pages 1-16, June.
    71. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    72. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    73. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    74. Isik, Mine & Sarica, Kemal & Ari, Izzet, 2020. "Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach," Transport Policy, Elsevier, vol. 97(C), pages 210-219.
    75. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    76. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.
    77. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    78. Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    79. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    80. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2019. "Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    81. Hanafizadeh, Payam & Navardi, Zeinab & Bamdad Soofi, Jahanyar, 2010. "An attitude study on the environmental effects of rationing petrol in Tehran," Energy Policy, Elsevier, vol. 38(11), pages 6830-6848, November.
    82. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).
    83. Chandran, V.G.R. & Tang, Chor Foon, 2013. "The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 445-453.
    84. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    85. Zhao, Jiaxin & Mattauch, Linus, 2022. "When standards have better distributional consequences than carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    86. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
    87. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
    88. Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2019. "Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector," Energy, Elsevier, vol. 173(C), pages 706-720.
    89. Muhammad Azmi & Akihiro Tokai, 2016. "System dynamic modeling of CO2 emissions and pollutants from passenger cars in Malaysia, 2040," Environment Systems and Decisions, Springer, vol. 36(4), pages 335-350, December.
    90. Ming Meng & Manyu Li, 2020. "Decomposition Analysis and Trend Prediction of CO 2 Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    91. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    92. Dan He & Jialiang Yang & Zhengming Wang & Wenchao Li, 2020. "Has the manufacturing policy helped to promote the logistics industry?," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    93. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    94. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    95. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    96. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    97. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    98. Liu, Hongtao & Polenske, Karen R. & Xi, Youmin & Guo, Ju'e, 2010. "Comprehensive evaluation of effects of straw-based electricity generation: A Chinese case," Energy Policy, Elsevier, vol. 38(10), pages 6153-6160, October.
    99. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    100. Chang, Chun-Ping & Dong, Minyi & Sui, Bo & Chu, Yin, 2019. "Driving forces of global carbon emissions: From time- and spatial-dynamic perspectives," Economic Modelling, Elsevier, vol. 77(C), pages 70-80.
    101. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    102. Huali Sun & Mengzhen Li & Yaofeng Xue, 2019. "Examining the Factors Influencing Transport Sector CO 2 Emissions and Their Efficiency in Central China," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    103. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    104. Khatiwada, Dilip & Silveira, Semida, 2017. "Scenarios for bioethanol production in Indonesia: How can we meet mandatory blending targets?," Energy, Elsevier, vol. 119(C), pages 351-361.
    105. Eom, Jiyong & Schipper, Lee & Thompson, Lou, 2012. "We keep on truckin': Trends in freight energy use and carbon emissions in 11 IEA countries," Energy Policy, Elsevier, vol. 45(C), pages 327-341.

  58. Parry, Ian W.H. & Timilsina, Govinda R., 2009. "Pricing externalities from passenger transportation in Mexico city," Policy Research Working Paper Series 5071, The World Bank.

    Cited by:

    1. Hala Abou- Ali & Alban Thomas, 2012. "Regulating traffic to reduce air pollution in Greater Cairo, Egypt," Chapters, in: Hala Abou-Ali (ed.), Economic Incentives and Environmental Regulation, chapter 5, pages 95-119, Edward Elgar Publishing.
    2. Steurer, Nora & Bonilla, David, 2016. "Building sustainable transport futures for the Mexico City Metropolitan Area," Transport Policy, Elsevier, vol. 52(C), pages 121-133.
    3. Shanjun Li, 2018. "Better Lucky Than Rich? Welfare Analysis of Automobile Licence Allocations in Beijing and Shanghai," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(4), pages 2389-2428.
    4. Anas, Alex & De Sarkar, Sayan & Timilsina, Govinda R., 2021. "Bus Rapid Transit versus road expansion to alleviate congestion: A general equilibrium comparison," Economics of Transportation, Elsevier, vol. 26.
    5. Ziying Yang & Manping Tang, 2019. "Welfare Analysis of Government Subsidy Programs for Fuel-Efficient Vehicles and New Energy Vehicles in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 911-937, October.

  59. Parry, Ian W.H. & Timilsina, Govinda R., 2008. "How Should Passenger Travel in Mexico City Be Priced?," RFF Working Paper Series dp-08-17, Resources for the Future.

    Cited by:

    1. Blackman, Allen & Osakwe, Rebecca & Alpizar, Francisco, 2010. "Fuel tax incidence in developing countries: The case of Costa Rica," Energy Policy, Elsevier, vol. 38(5), pages 2208-2215, May.
    2. Andrés Gómez-Lobo, 2014. "Monopoly, Subsidies and the Mohring Effect: A Synthesis," Transport Reviews, Taylor & Francis Journals, vol. 34(3), pages 297-315, May.
    3. Hirte, Georg & Tscharaktschiew, Stefan, 2018. "The impact of anti-congestion policies and the role of labor-supply margins," CEPIE Working Papers 04/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    4. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K., 2023. "Of cooks, crooks and slum-dwellers: Exploring the lived experience of energy and mobility poverty in Mexico's informal settlements," World Development, Elsevier, vol. 161(C).
    5. Avner,Paolo & Mehndiratta,Shomik Raj & Viguie,Vincent & Hallegatte,Stephane & Avner,Paolo & Mehndiratta,Shomik Raj & Viguie,Vincent & Hallegatte,Stephane, 2017. "Buses, houses or cash ? socio-economic, spatial and environmental consequences of reforming public transport subsidies in Buenos Aires," Policy Research Working Paper Series 8166, The World Bank.
    6. Adam T. Jones, 2016. "Mileage tax, property tax, sales tax, or fee: the best way to pay for commercial infrastructure that isn’t free," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 36(1), pages 81-98, February.
    7. Hakim Hammadou & Claire Papaix, 2015. "Policy packages for modal shift and CO2 reduction in Lille, France," Post-Print hal-01533557, HAL.
    8. Lucas W. Davis, 2020. "Estimating the Price Elasticity of Demand for Subways: Evidence from Mexico," NBER Working Papers 28244, National Bureau of Economic Research, Inc.
    9. Anders Bondemark & Henrik Andersson & Anders Wretstrand & Karin Brundell-Freij, 2021. "Is it expensive to be poor? Public transport in Sweden," Transportation, Springer, vol. 48(5), pages 2709-2734, October.
    10. Erin T. Mansur & Sheila M. Olmstead, 2007. "The Value of Scarce Water: Measuring the Inefficiency of Municipal Regulations," NBER Working Papers 13513, National Bureau of Economic Research, Inc.
    11. Li, Shanjun & Kahn, Matthew E. & Nickelsburg, Jerry, 2015. "Public transit bus procurement: The role of energy prices, regulation and federal subsidies," Journal of Urban Economics, Elsevier, vol. 87(C), pages 57-71.
    12. Harbering, Marie & Schlüter, Jan, 2020. "Determinants of transport mode choice in metropolitan areas the case of the metropolitan area of the Valley of Mexico," Journal of Transport Geography, Elsevier, vol. 87(C).
    13. Georg Hirte & Stefan Tscharaktschiew, 2012. "The optimal subsidy on electric vehicles in a metropolitan area - a SCGE study for Germany," ERSA conference papers ersa12p324, European Regional Science Association.
    14. Georg Hirte & Stefan Tscharaktschiew, 2015. "Optimal Fuel Taxes and Heterogeneity of Cities," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 35(2), pages 173-209, October.
    15. Gómez Gélvez, Julian & Mojica, Carlos, 2022. "Subsidios al transporte público en América Latina desde una perspectiva de eficiencia: aplicación a Bogotá, Colombia," IDB Publications (Working Papers) 12260, Inter-American Development Bank.
    16. Tirachini, Alejandro & Proost, Stef, 2021. "Transport taxes and subsidies in developing countries: The effect of income inequality aversion," Economics of Transportation, Elsevier, vol. 25(C).
    17. Hirte, Georg & Tscharaktschiew, Stefan, 2020. "The role of labor-supply margins in shaping optimal transport taxes," Economics of Transportation, Elsevier, vol. 22(C).
    18. Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris & Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris, 2015. "Transport policies and development," Policy Research Working Paper Series 7366, The World Bank.
    19. Tscharaktschiew, Stefan, 2014. "Shedding light on the appropriateness of the (high) gasoline tax level in Germany," Economics of Transportation, Elsevier, vol. 3(3), pages 189-210.
    20. Fullerton, Thomas M., Jr. & Munoz Sapien, Gabriel & Barraza de Anda, Martha P. & Dominguez Ruvalcaba, Lisbeily, 2011. "Dinámica del Consumo de Gasolina en Ciudad Juárez, Chihuahua [Gasoline Consumption Dynamics in Ciudad Juárez, Chihuahua]," MPRA Paper 46853, University Library of Munich, Germany, revised 15 Jun 2012.
    21. Mariana Conte Grand & Alejandro Rasteletti, 2021. "Pérdidas de bienestar por imposición subóptima en los impuestos a las gasolinas en América Latina y el Caribe," CEMA Working Papers: Serie Documentos de Trabajo. 821, Universidad del CEMA.
    22. Georg Hirte & Stefan Tscharaktschiew, 2015. "Why not to choose the most convenient labor supply model? The impact of labor supply modeling on policy evaluation," ERSA conference papers ersa15p303, European Regional Science Association.
    23. Eva Ayaragarnchanakul & Felix Creutzig & Aneeque Javaid & Nattapong Puttanapong, 2022. "Choosing a Mode in Bangkok: Room for Shared Mobility?," Sustainability, MDPI, vol. 14(15), pages 1-19, July.
    24. Arturo Antón Sarabia & Fausto Hernández Trillo, 2019. "Internalizando externalidades: El impuesto a la gasolina en Guatemala," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 14(1), pages 1-20, Enero-Mar.
    25. Dulal, Hari Bansha & Shah, Kalim U. & Sapkota, Chandan & Uma, Gengaiah & Kandel, Bibek R., 2013. "Renewable energy diffusion in Asia: Can it happen without government support?," Energy Policy, Elsevier, vol. 59(C), pages 301-311.
    26. Anas, Alex & Timilsina, Govinda R. & Zheng, Siqi, 2009. "An analysis of various policy instruments to reduce congestion, fuel consumption and CO2 emissions in Beijing," Policy Research Working Paper Series 5068, The World Bank.
    27. Roque Daniela & Masoumi Houshmand E., 2017. "Longitudinal correlations of car ownership with socio-economics, urban form, and transport infrastructure in Latin America: Example from Ensenada, Mexico," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 37(37), pages 109-123, September.
    28. Parry, Ian W.H. & Timilsina, Govinda R., 2012. "Demand side instruments to reduce road transportation externalities in the greater Cairo metropolitan area," Policy Research Working Paper Series 6083, The World Bank.
    29. Rizzi, Luis Ignacio & De La Maza, Cristobal, 2017. "The external costs of private versus public road transport in the Metropolitan Area of Santiago, Chile," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 123-140.
    30. Fausto Hernández-Trillo & Arturo Antón-Sarabia, 2013. "Optimal Gasoline Tax in Developing, Oil-Producing Countries: The Case of Mexico," Working papers DTE 555, CIDE, División de Economía.
    31. Pavón, Nicolás & Rizzi, Luis Ignacio, 2019. "Road infrastructure and public bus transport service provision under different funding schemes: A simulation analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 89-105.
    32. Fan, Jin & He, Haonan & Wu, Yanrui, 2016. "Personal carbon trading and subsidies for hybrid electric vehicles," Economic Modelling, Elsevier, vol. 59(C), pages 164-173.
    33. Cravioto, Jordi & Yamasue, Eiji & Okumura, Hideyuki & Ishihara, Keiichi N., 2013. "Road transport externalities in Mexico: Estimates and international comparisons," Transport Policy, Elsevier, vol. 30(C), pages 63-76.

  60. Timilsina, Govinda R. & Dulal, Hari B., 2008. "Fiscal policy instruments for reducing congestion and atmospheric emissions in the transport sector : a review," Policy Research Working Paper Series 4652, The World Bank.

    Cited by:

    1. Blackman, Allen & Osakwe, Rebecca & Alpizar, Francisco, 2010. "Fuel tax incidence in developing countries: The case of Costa Rica," Energy Policy, Elsevier, vol. 38(5), pages 2208-2215, May.
    2. Santos, Georgina & Behrendt, Hannah & Maconi, Laura & Shirvani, Tara & Teytelboym, Alexander, 2010. "Part I: Externalities and economic policies in road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 2-45.
    3. Hala Abou- Ali & Alban Thomas, 2012. "Regulating traffic to reduce air pollution in Greater Cairo, Egypt," Chapters, in: Hala Abou-Ali (ed.), Economic Incentives and Environmental Regulation, chapter 5, pages 95-119, Edward Elgar Publishing.
    4. Dorina Pojani & Dominic Stead, 2015. "Sustainable Urban Transport in the Developing World: Beyond Megacities," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
    5. Ivaldi, Marc & Batarce, Marco, 2011. "Travel Demand Model with Heterogeneous Users and Endogenous Congestion: An application to optimal pricing of bus services," CEPR Discussion Papers 8416, C.E.P.R. Discussion Papers.
    6. Kalim Shah & George Philippidis & Hari Dulal & Gernot Brodnig, 2014. "Developing biofuels industry in small economies: Policy experiences and lessons from the caribbean basin initiative," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(2), pages 229-253, February.
    7. Parry, Ian W.H. & Timilsina, Govinda R., 2012. "Demand side instruments to reduce road transportation externalities in the greater Cairo metropolitan area," Policy Research Working Paper Series 6083, The World Bank.
    8. Timilsina, Govinda R. & Shrestha, Ashish, 2011. "How much hope should we have for biofuels?," Energy, Elsevier, vol. 36(4), pages 2055-2069.
    9. Blackman, Allen & Qin, Ping & Yang, Jun, 2020. "How costly are driving restrictions? Contingent valuation evidence from Beijing," Journal of Environmental Economics and Management, Elsevier, vol. 104(C).

  61. Timilsina, Govinda R. & Shrestha, Ashish, 2008. "The growth of transport cector CO2 emissions and underlying factors in Latin America and the Caribbean," Policy Research Working Paper Series 4734, The World Bank.

    Cited by:

    1. Adekunle, Wasiu & Omo-Ikirodah, Beatrice & Collins, Olutosin & Adeniyi, Andrew & Bagudo, Abubakar & Mosobalaje, Risikat & Oladepo, Safiyyah, 2021. "Analysis of Environmental Degradation and its Determinants in Nigeria: New Evidence from ARDL and Causality Approaches," MPRA Paper 111069, University Library of Munich, Germany, revised 14 Dec 2021.

  62. Timilsina, Govinda R., 2008. "A general equilibrium analysis of demand side management programs under the clean development mechanism of the kyoto protocol," Policy Research Working Paper Series 4563, The World Bank.

    Cited by:

    1. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.

  63. Timilsina, Govinda R., 2007. "The role of revenue recycling schemes in environmental tax selection : a general equilibrium analysis," Policy Research Working Paper Series 4388, The World Bank.

    Cited by:

    1. Galindo, Luis Miguel & Beltrán, Allan & Ferrer, Jimy & Alatorre, José Eduardo, 2017. "Efectos potenciales de un impuesto al carbono sobre el producto interno bruto en los países de América Latina: estimaciones preliminares e hipotéticas a partir de un metaanálisis y una función de tran," Documentos de Proyectos 41867, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    2. Yu Liu & Meifang Zhou, 2018. "The Impact Of Coal Resource Tax Reform On The Chinese Economy: A Cge Analysis," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(03), pages 555-565, June.
    3. Liu, Yu & Lu, Yingying, 2015. "The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis," Applied Energy, Elsevier, vol. 141(C), pages 96-105.
    4. Lu, Chuanyi & Tong, Qing & Liu, Xuemei, 2010. "The impacts of carbon tax and complementary policies on Chinese economy," Energy Policy, Elsevier, vol. 38(11), pages 7278-7285, November.

  64. Timilsina, Govinda R., 2007. "Atmospheric stabilization of CO2 emissions : near-term reductions and intensity-based targets," Policy Research Working Paper Series 4352, The World Bank.

    Cited by:

    1. Dorothee Boccanfuso & Antonio Estache & Luc Savard, 2011. "The Intra-country Distributional Impact of Policies to Fight Climate Change: A Survey," Journal of Development Studies, Taylor & Francis Journals, vol. 47(1), pages 97-117.
    2. Dorothée Boccanfuso & Luc Savard & Antonio Estache, 2013. "The distributional impact of developed countries' climate change policies on Senegal: A macro-micro CGE application," ULB Institutional Repository 2013/168145, ULB -- Universite Libre de Bruxelles.
    3. Simin SEURY, 2009. "Inward Foreign Investment, Corruption and Firm's Ability: Firm-level Evidence from the Transition Economies," EcoMod2009 21500083, EcoMod.
    4. Dorothée Boccanfuso & Antonio Estache & Luc Savard, 2009. "Distributional impact of developed countries CC policies on Senegal : A macro-micro CGE application," Cahiers de recherche 09-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    5. Dorothée Boccanfuso & Antonio Estache & Luc Savard, 2008. "Distributional impact of global warming environmental policies: A survey," Cahiers de recherche 08-14, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.

Articles

  1. Timilsina, Govind R. & Pang, Jun & Xi, Yang, 2021. "Enhancing the quality of climate policy analysis in China: Linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Cited by:

    1. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Zhixing Li & Mimi Tian & Yafei Zhao & Zhao Zhang & Yuxi Ying, 2021. "Development of an Integrated Performance Design Platform for Residential Buildings Based on Climate Adaptability," Energies, MDPI, vol. 14(24), pages 1-44, December.
    3. Aryanpur, Vahid & Fattahi, Mahshid & Mamipour, Siab & Ghahremani, Mahsa & Gallachóir, Brian Ó & Bazilian, Morgan D. & Glynn, James, 2022. "How energy subsidy reform can drive the Iranian power sector towards a low-carbon future," Energy Policy, Elsevier, vol. 169(C).

  2. Timilsina, Govinda R. & Pang, Jun & Yang, Xi, 2021. "Macroeconomic impacts of power sector reforms in China," Energy Policy, Elsevier, vol. 157(C).

    Cited by:

    1. Huang, Zhenyu & Liu, Youbo & Li, Kecun & Liu, Jichun & Gao, Hongjun & Qiu, Gao & Shen, Xiaodong & Liu, Junyong, 2023. "Evaluating long-term profile of demand response under different market designs: A comparison of scarcity pricing and capacity auction," Energy, Elsevier, vol. 282(C).
    2. Tianyu Li & Ciwei Gao & Michael G. Pollitt & Tao Chen & Hao Ming, 2022. "Measuring the effects of power system reform in Jiangsu province, China from the perspective of social cost benefit analysis," Working Papers EPRG2213, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.

  3. Govinda R. Timilsina and Sunil Malla, 2021. "Clean Cooking: Why is Adoption Slow Despite Large Health and Environmental Benefits?," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).

    Cited by:

    1. Olivia Coldrey & Paul Lant & Peta Ashworth, 2023. "Elucidating Finance Gaps through the Clean Cooking Value Chain," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    2. Malla, Sunil, 2022. "An outlook of end-use energy demand based on a clean energy and technology transformation of the household sector in Nepal," Energy, Elsevier, vol. 238(PB).
    3. Averi Chakrabarti & Sudhanshu Handa & Malawi and Zambia Cash Transfer Evaluation Teams, 2023. "The impacts of cash transfers on household energy choices," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(5), pages 1426-1457, October.
    4. Chantal Iribagiza & Taylor Sharpe & Jeremy Coyle & Pie Nkubito & Ricardo Piedrahita & Michael Johnson & Evan A. Thomas, 2021. "Evaluating the Effects of Access to Air Quality Data on Household Air Pollution and Exposure—An Interrupted Time Series Experimental Study in Rwanda," Sustainability, MDPI, vol. 13(20), pages 1-15, October.

  4. Govinda R. Timilsina, 2021. "Regional electricity trade for hydropower development in South Asia," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 37(3), pages 392-410, May.

    Cited by:

    1. Schulz, Christopher & Saklani, Udisha, 2021. "The future of hydropower development in Nepal: Views from the private sector," Renewable Energy, Elsevier, vol. 179(C), pages 1578-1588.
    2. Timilsina, Govinda R. & Deluque Curiel, Ilka Fabiana, 2023. "Subsidy removal, regional trade and CO2 mitigation in the electricity sector in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 177(C).

  5. Timilsina, Govinda & Steinbuks, Jevgenijs, 2021. "Economic costs of electricity load shedding in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).

    Cited by:

    1. Munyanyi, Musharavati Ephraim & Awaworyi Churchill, Sefa, 2022. "Foreign aid and energy poverty: Sub-national evidence from Senegal," Energy Economics, Elsevier, vol. 108(C).
    2. Nepal, Rabindra & Sofe, Ronald & Jamasb, Tooraj, 2022. "Independent Power Producers and Deregulation in an Island Based Small Electricity System: The Case of Papua New Guinea," Working Papers 14-2022, Copenhagen Business School, Department of Economics.
    3. Guo, Dongmei & Li, Qin & Liu, Peng & Shi, Xunpeng & Yu, Jian, 2023. "Power shortage and firm performance: Evidence from a Chinese city power shortage index," Energy Economics, Elsevier, vol. 119(C).

  6. Anas, Alex & De Sarkar, Sayan & Timilsina, Govinda R., 2021. "Bus Rapid Transit versus road expansion to alleviate congestion: A general equilibrium comparison," Economics of Transportation, Elsevier, vol. 26.

    Cited by:

    1. Wenjie Li & Chun Luo & Yiwei He & Yu Wan & Hongbo Du, 2023. "Estimating Inter-Regional Freight Demand in China Based on the Input–Output Model," Sustainability, MDPI, vol. 15(12), pages 1-16, June.
    2. Lee, Jeongeun & Koo, Yoonmo, 2023. "A general equilibrium analysis of individual choice behavior on alternative fuel vehicles," Ecological Economics, Elsevier, vol. 204(PB).
    3. Beaudoin, Justin & Tyndall, Justin, 2023. "The effect of bus rapid transit on local home prices," Research in Transportation Economics, Elsevier, vol. 102(C).

  7. Govinda R. Timilsina, 2021. "Financing Climate Change Adaptation: International Initiatives," Sustainability, MDPI, vol. 13(12), pages 1-19, June.

    Cited by:

    1. Tiberiu Iancu & Valentina Constanta Tudor & Eduard Alexandru Dumitru & Cristina Maria Sterie & Marius Mihai Micu & Dragos Smedescu & Liviu Marcuta & Elena Tonea & Paula Stoicea & Catalin Vintu & Andy , 2022. "A Scientometric Analysis of Climate Change Adaptation Studies," Sustainability, MDPI, vol. 14(19), pages 1-20, October.
    2. Carè, R. & Weber, O., 2023. "How much finance is in climate finance? A bibliometric review, critiques, and future research directions," Research in International Business and Finance, Elsevier, vol. 64(C).

  8. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.

    Cited by:

    1. Liu, Yang & Dong, Kangyin & Taghizadeh-Hesary, Farhad, 2023. "How does energy aid mitigate the recipient countries’ carbon emissions?," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 359-375.
    2. Sławomir Skiba & Marianna Maruszczak, 2022. "The Impact of the COVID-19 Pandemic on the Decision to Use Solar Energy and Install Photovoltaic Panels in Households in the Years 2019–2021 within the Area of a Selected Polish Municipality," Energies, MDPI, vol. 15(19), pages 1-14, October.
    3. Somossy, Éva Szabina, 2022. "A magyar Metár-tenderek nemzetközi ár-összehasonlító elemzése [International price comparison of Hungarian renewable tenders]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(5), pages 572-596.
    4. Minli Yu & Fu-Sheng Tsai & Hui Jin & Hejie Zhang, 2022. "Digital finance and renewable energy consumption: evidence from China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    5. Chen, Jinyu & Luo, Qian & Tu, Yan & Ren, Xiaohang & Naderi, Niki, 2023. "Renewable energy transition and metal consumption: Dynamic evolution analysis based on transnational data," Resources Policy, Elsevier, vol. 85(PB).
    6. Piotr Senkus & Waldemar Glabiszewski & Aneta Wysokińska-Senkus & Szymon Cyfert & Roman Batko, 2021. "The Potential of Ecological Distributed Energy Generation Systems, Situation, and Perspective for Poland," Energies, MDPI, vol. 14(23), pages 1-26, November.
    7. Pasquale Marcello Falcone, 2023. "Sustainable Energy Policies in Developing Countries: A Review of Challenges and Opportunities," Energies, MDPI, vol. 16(18), pages 1-19, September.
    8. Edoardo Ruffino & Bruno Piga & Alessandro Casasso & Rajandrea Sethi, 2022. "Heat Pumps, Wood Biomass and Fossil Fuel Solutions in the Renovation of Buildings: A Techno-Economic Analysis Applied to Piedmont Region (NW Italy)," Energies, MDPI, vol. 15(7), pages 1-25, March.
    9. Dmytro Osiichuk, 2023. "The Obstacles to the Growth of the Renewable Energy Industry in the European Union," Sustainability, MDPI, vol. 15(19), pages 1-18, October.
    10. Candas, Soner & Reveron Baecker, Beneharo & Mohapatra, Anurag & Hamacher, Thomas, 2023. "Optimization-based framework for low-voltage grid reinforcement assessment under various levels of flexibility and coordination," Applied Energy, Elsevier, vol. 343(C).
    11. Adriana Grigorescu & Victor Raul Lopez Ruiz & Cristina Lincaru & Elena Condrea, 2023. "Specialization Patterns for the Development of Renewable Energy Generation Technologies across Countries," Energies, MDPI, vol. 16(20), pages 1-26, October.
    12. Li, Yi & Liu, Tianya & Xu, Jinpeng, 2023. "Analyzing the economic, social, and technological determinants of renewable and nonrenewable electricity production in China: Findings from time series models," Energy, Elsevier, vol. 282(C).
    13. Nan Shang & Guori Huang & Yuan Leng & Jihong Zhang & Angxing Shen, 2023. "Time Limit of Environmental Benefits of Renewable Energy Power Projects—Analysis Based on Monte Carlo Simulation," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    14. Pavel Atănăsoae & Radu Dumitru Pentiuc & Laurențiu Dan Milici, 2022. "Opportunity Analysis of Cogeneration and Trigeneration Solutions: An Application in the Case of a Drug Factory," Energies, MDPI, vol. 15(8), pages 1-27, April.
    15. Akan, Taner, 2023. "Can renewable energy mitigate the impacts of inflation and policy interest on climate change?," Renewable Energy, Elsevier, vol. 214(C), pages 255-289.
    16. Zhu, Xuehong & Ding, Qian & Chen, Jinyu, 2022. "How does critical mineral trade pattern affect renewable energy development? The mediating role of renewable energy technological progress," Energy Economics, Elsevier, vol. 112(C).
    17. Daniele Zingariello & Marija Demicoli & Luciano Mule’ Stagno, 2021. "Income Maximisation in a Maltese Household Photovoltaic System by Means of Output and Consumption Simulations," Energies, MDPI, vol. 14(23), pages 1-17, November.
    18. Anatolitis, Vasilios & Azanbayev, Alina & Fleck, Ann-Katrin, 2022. "How to design efficient renewable energy auctions? Empirical insights from Europe," Energy Policy, Elsevier, vol. 166(C).
    19. Barbrook-Johnson, Peter & Tankwa, Brendon, 2023. "Increasing inequality between countries in key renewable energy costs," INET Oxford Working Papers 2023-20, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    20. Babagheibi, Mahsa & Jadid, Shahram & Kazemi, Ahad, 2023. "An Incentive-based robust flexibility market for congestion management of an active distribution system to use the free capacity of Microgrids," Applied Energy, Elsevier, vol. 336(C).

  9. Pang, Jun & Timilsina, Govinda, 2021. "How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Cited by:

    1. Ying Zhang & Yingli Huang, 2023. "Killing Two Birds with One Stone or Missing One of Them? The Synergistic Governance Effect of China’s Carbon Emissions Trading Scheme on Pollution Control and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    2. Wang, Xiao-Qing & Su, Chi-Wei & Lobonţ, Oana-Ramona & Li, Hao & Nicoleta-Claudia, Moldovan, 2022. "Is China's carbon trading market efficient? Evidence from emissions trading scheme pilots," Energy, Elsevier, vol. 245(C).
    3. Wu, Jie & Fan, Ying & Timilsina, Govinda & Xia, Yan, 2022. "Exploiting Complementarity of Carbon Pricing Instruments for Low-Carbon Development in the People’s Republic of China," ADBI Working Papers 1329, Asian Development Bank Institute.
    4. Tobias Mueller & Steven Gronau, 2023. "Fostering Macroeconomic Research on Hydrogen-Powered Aviation: A Systematic Literature Review on General Equilibrium Models," Energies, MDPI, vol. 16(3), pages 1-33, February.
    5. Lin, Zewei & Wang, Peng & Ren, Songyan & Zhao, Daiqing, 2023. "Economic and environmental impacts of EVs promotion under the 2060 carbon neutrality target—A CGE based study in Shaanxi Province of China," Applied Energy, Elsevier, vol. 332(C).
    6. Yang, Yi & Yuan, Zhuqing & Yang, Shengnan, 2022. "Difference in the drivers of industrial carbon emission costs determines the diverse policies in middle-income regions: A case of northwestern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Jin-Feng Zhou & Juan Wu & Wei Chen & Dan Wu, 2022. "Carbon Emission Reduction Cost Assessment Using Multiregional Computable General Equilibrium Model: Guangdong–Hong Kong–Macao Greater Bay Area," Sustainability, MDPI, vol. 14(17), pages 1-26, August.
    8. Pan, Yuling & Dong, Feng, 2022. "Design of energy use rights trading policy from the perspective of energy vulnerability," Energy Policy, Elsevier, vol. 160(C).
    9. Shangjia Wang & Wenhui Zhao & Shuwen Fan & Lei Xue & Zijuan Huang & Zhigang Liu, 2022. "Is the Renewable Portfolio Standard in China Effective? Research on RPS Allocation Efficiency in Chinese Provinces Based on the Zero-Sum DEA Model," Energies, MDPI, vol. 15(11), pages 1-18, May.
    10. Fang Wan & Jizu Li, 2023. "Responsibility Allocation of Provincial Industry Emission Reduction from the Perspective of Industrial Linkages—A Case Study of Shanxi Province," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    11. Yongna Yuan & Guiyu Li & Hongbo Duan, 2023. "The Achievement of Multiple Nationally Determined Contribution Goals and Regional Economic Development in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 1155-1177, April.
    12. Wu, Rongxin & Tan, Zhizhou & Lin, Boqiang, 2023. "Does carbon emission trading scheme really improve the CO2 emission efficiency? Evidence from China's iron and steel industry," Energy, Elsevier, vol. 277(C).
    13. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.

  10. Timilsina, Govinda R. & Pargal, Sheoli, 2020. "Economics of energy subsidy reforms in Bangladesh," Energy Policy, Elsevier, vol. 142(C).

    Cited by:

    1. Hosan, Shahadat & Rahman, Md Matiar & Karmaker, Shamal Chandra & Saha, Bidyut Baran, 2023. "Energy subsidies and energy technology innovation: Policies for polygeneration systems diffusion," Energy, Elsevier, vol. 267(C).
    2. Zahra Zarepour, 2022. "Short- and long-run macroeconomic impacts of the 2010 Iranian energy subsidy reform," SN Business & Economics, Springer, vol. 2(10), pages 1-32, October.
    3. Abdul Hasib Siddique & Sumaiya Tasnim & Fahim Shahriyar & Mehedi Hasan & Khalid Rashid, 2021. "Renewable Energy Sector in Bangladesh: The Current Scenario, Challenges and the Role of IoT in Building a Smart Distribution Grid," Energies, MDPI, vol. 14(16), pages 1-24, August.
    4. Raza, Muhammad Yousaf & Lin, Boqiang, 2023. "Future outlook and influencing factors analysis of natural gas consumption in Bangladesh: An economic and policy perspectives," Energy Policy, Elsevier, vol. 173(C).
    5. Majidpour, Mehdi, 2022. "Policy lessons from the execution of fuel dual-pricing: Insights for fuel-subsidizing economies," Energy, Elsevier, vol. 247(C).
    6. Aryanpur, Vahid & Fattahi, Mahshid & Mamipour, Siab & Ghahremani, Mahsa & Gallachóir, Brian Ó & Bazilian, Morgan D. & Glynn, James, 2022. "How energy subsidy reform can drive the Iranian power sector towards a low-carbon future," Energy Policy, Elsevier, vol. 169(C).
    7. Lee, Chien-Chiang & Hussain, Jafar & Chen, Yongxiu, 2022. "The optimal behavior of renewable energy resources and government's energy consumption subsidy design from the perspective of green technology implementation," Renewable Energy, Elsevier, vol. 195(C), pages 670-680.
    8. Fang Wu & Qi Hu & Chenming Zhu & Haitao Wang & Qian Yu & Huaping Sun, 2021. "New Structural Economic Analysis of Anti-COVID-19 Pandemic Model of BEST Region," IJERPH, MDPI, vol. 18(15), pages 1-23, July.
    9. Xu, Shang & Zhang, Jun, 2023. "The welfare impacts of removing coal subsidies in rural China," Energy Economics, Elsevier, vol. 118(C).

  11. Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2020. "Do drivers of CO2 emission growth alter overtime and by the stage of economic development?," Energy Policy, Elsevier, vol. 140(C).

    Cited by:

    1. Stephen K. Dimnwobi & Chukwunonso Ekesiobi & Chekwube V. Madichie & Simplice A. Asongu, 2021. "Population Dynamics and Environmental Quality in Africa," Working Papers 21/047, European Xtramile Centre of African Studies (EXCAS).
    2. Di Wang & Zhiyuan Zhang & Ruyi Shi, 2022. "Fiscal Decentralization, Green Technology Innovation, and Regional Air Pollution in China: An Investigation from the Perspective of Intergovernmental Competition," IJERPH, MDPI, vol. 19(14), pages 1-18, July.
    3. Jiang, Xueting, 2023. "Rapid decarbonization in the Chinese electric power sector and air pollution reduction Co-benefits in the Post-COP26 Era," Resources Policy, Elsevier, vol. 82(C).
    4. Khan, Samiha & Murshed, Muntasir & Ozturk, Ilhan & Khudoykulov, Khurshid, 2022. "The roles of energy efficiency improvement, renewable electricity production, and financial inclusion in stimulating environmental sustainability in the Next Eleven countries," Renewable Energy, Elsevier, vol. 193(C), pages 1164-1176.
    5. Wang, Jianda & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Decoupling and decomposition analysis of investments and CO2 emissions in information and communication technology sector," Applied Energy, Elsevier, vol. 302(C).
    6. Wenlu Zhao & Guanghu Jin & Chenyue Huang & Jinji Zhang, 2023. "Attention and Sentiment of the Chinese Public toward a 3D Greening System Based on Sina Weibo," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    7. Kangyin Dong & Yalin Han & Yue Dou & Muhammad Shahbaz, 2022. "Moving toward carbon neutrality: Assessing natural gas import security and its impact on CO2 emissions," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 751-770, August.
    8. Akan, Taner, 2023. "Explaining and modeling the mediating role of energy consumption between financial development and carbon emissions," Energy, Elsevier, vol. 274(C).
    9. Nitin Kumar Singh & Takuya Fukushima & Masaaki Nagahara, 2023. "Gradient Boosting Approach to Predict Energy-Saving Awareness of Households in Kitakyushu," Energies, MDPI, vol. 16(16), pages 1-10, August.
    10. Manal Ayyad Dhif Alshammry & Saqib Muneer, 2023. "The influence of economic development, capital formation, and internet use on environmental degradation in Saudi Arabia," Future Business Journal, Springer, vol. 9(1), pages 1-16, December.
    11. Liu, Xin & Wang, Ping & Song, Hang & Zeng, Xiaoying, 2021. "Determinants of net primary productivity: Low-carbon development from the perspective of carbon sequestration," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    12. Taner Akan & Halil İbrahim Gündüz & Tara Vanlı & Ahmet Baran Zeren & Ali Haydar Işık & Tamerlan Mashadihasanli, 2023. "Why are some countries cleaner than others? New evidence from macroeconomic governance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6167-6223, July.
    13. Kristiana Dolge & Dagnija Blumberga, 2023. "Transitioning to Clean Energy: A Comprehensive Analysis of Renewable Electricity Generation in the EU-27," Energies, MDPI, vol. 16(18), pages 1-27, September.
    14. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    15. Wang, Jianda & Dong, Kangyin & Wang, Kun, 2023. "Towards green recovery: Platform economy and its impact on carbon emissions in China," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 969-987.
    16. Li, Jianglong & Sun, Shiqiang & Sharma, Disha & Ho, Mun Sing & Liu, Hongxun, 2023. "Tracking the drivers of global greenhouse gas emissions with spillover effects in the post-financial crisis era," Energy Policy, Elsevier, vol. 174(C).
    17. Khan, Irfan & Hou, Fujun & Le, Hoang Phong & Ali, Syed Ahtsham, 2021. "Do natural resources, urbanization, and value-adding manufacturing affect environmental quality? Evidence from the top ten manufacturing countries," Resources Policy, Elsevier, vol. 72(C).
    18. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
    19. Sandra Chukwudumebi Obiora & Olusola Bamisile & Evans Opoku-Mensah & Adasa Nkrumah Kofi Frimpong, 2020. "Impact of Banking and Financial Systems on Environmental Sustainability: An Overarching Study of Developing, Emerging, and Developed Economies," Sustainability, MDPI, vol. 12(19), pages 1-21, September.
    20. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    21. Pan, Xianyou & Song, Malin & Wang, Yuqing & Shen, Zhiyang & Song, Jinbo & Xie, Pinjie & Pan, Xiongfeng, 2022. "Liability accounting of natural resource assets from the perspective of input Slack—An analysis based on the energy resource in 282 prefecture-level cities in China," Resources Policy, Elsevier, vol. 78(C).
    22. Li, Kai & Ma, Minda & Xiang, Xiwang & Feng, Wei & Ma, Zhili & Cai, Weiguang & Ma, Xin, 2022. "Carbon reduction in commercial building operations: A provincial retrospection in China," Applied Energy, Elsevier, vol. 306(PB).
    23. Changbing Jiang & Jiaming Xu & Shufang Li & Xiang Zhang & Yao Wu, 2022. "The Order Allocation Problem and the Algorithm of Network Freight Platform under the Constraint of Carbon Tax Policy," IJERPH, MDPI, vol. 19(17), pages 1-27, September.
    24. Khan, Zeeshan & Ali, Shahid & Dong, Kangyin & Li, Rita Yi Man, 2021. "How does fiscal decentralization affect CO2 emissions? The roles of institutions and human capital," Energy Economics, Elsevier, vol. 94(C).
    25. Ozdemir, Ali Can, 2023. "Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey," Energy, Elsevier, vol. 273(C).
    26. Fakher, Hossein Ali & Ahmed, Zahoor & Acheampong, Alex O. & Nathaniel, Solomon Prince, 2023. "Renewable energy, nonrenewable energy, and environmental quality nexus: An investigation of the N-shaped Environmental Kuznets Curve based on six environmental indicators," Energy, Elsevier, vol. 263(PA).
    27. Changyou Zhang & Wenyu Zhang & Weina Luo & Xue Gao & Bingchen Zhang, 2021. "Analysis of Influencing Factors of Carbon Emissions in China’s Logistics Industry: A GDIM-Based Indicator Decomposition," Energies, MDPI, vol. 14(18), pages 1-23, September.
    28. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    29. Mustapha Mukhtar & Sandra Obiora & Nasser Yimen & Zhang Quixin & Olusola Bamisile & Pauline Jidele & Young I. Irivboje, 2021. "Effect of Inadequate Electrification on Nigeria’s Economic Development and Environmental Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    30. Zakari, Abdulrasheed & Li, Guo & Khan, Irfan & Jindal, Abhinav & Tawiah, Vincent & Alvarado, Rafael, 2022. "Are abundant energy resources and Chinese business a solution to environmental prosperity in Africa?," Energy Policy, Elsevier, vol. 163(C).
    31. Irfan Khan & Fujun Hou, 2021. "The Impact of Socio-economic and Environmental Sustainability on CO2 Emissions: A Novel Framework for Thirty IEA Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 155(3), pages 1045-1076, June.
    32. Chiqun Hu & Xiaoyu Ma & Yangqing Liu & Jiexiao Ge & Xiaohui Zhang & Qiangyi Li, 2023. "Mechanism and Spatial Spillover Effect of New-Type Urbanization on Urban CO 2 Emissions: Evidence from 250 Cities in China," Land, MDPI, vol. 12(5), pages 1-25, May.
    33. Fakhri J. Hasanov & Zeeshan Khan & Muzzammil Hussain & Muhammad Tufail, 2021. "Theoretical Framework for the Carbon Emissions Effects of Technological Progress and Renewable Energy Consumption," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 810-822, September.
    34. Ibrahiem, Dalia M. & Hanafy, Shaimaa A., 2021. "Do energy security and environmental quality contribute to renewable energy? The role of trade openness and energy use in North African countries," Renewable Energy, Elsevier, vol. 179(C), pages 667-678.
    35. Jih-Shong Wu, 2023. "Measuring Economic Development and Carbon Dioxide Emissions Inefficiency," SAGE Open, , vol. 13(1), pages 21582440231, February.
    36. Wei, Yu & Zhang, Jiahao & Bai, Lan & Wang, Yizhi, 2023. "Connectedness among El Niño-Southern Oscillation, carbon emission allowance, crude oil and renewable energy stock markets: Time- and frequency-domain evidence based on TVP-VAR model," Renewable Energy, Elsevier, vol. 202(C), pages 289-309.
    37. Fang, Ming & Chang, Chiu-Lan, 2023. "The role of COP26 commitment and technological innovation in depletion of natural resources: Evidence from BRICS countries," Resources Policy, Elsevier, vol. 81(C).
    38. Sini, Snow & Abdul-Rahim, A.S. & Chin, Lee & Said, Rusmawati & Sulaiman, Chindo, 2022. "Natural resources’ impact on capital flow and conflict relationship in Africa: A novel insight from GMM and quantile regression," Resources Policy, Elsevier, vol. 78(C).
    39. Perry Sadorsky, 2020. "Energy Related CO 2 Emissions before and after the Financial Crisis," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    40. Muntasir Murshed & Uzma Khan & Aarif Mohammad Khan & Ilhan Ozturk, 2023. "Can energy productivity gains harness the carbon dioxide‐inhibiting agenda of the Next 11 countries? Implications for achieving sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 307-320, February.

  12. Dorothée Boccanfuso & Massa Coulibaly & Luc Savard & Govinda Timilsina, 2018. "Macroeconomic and Distributional Impacts of Jatropha Based Biodiesel in Mali," Economies, MDPI, vol. 6(4), pages 1-22, November.
    See citations under working paper version above.
  13. Govinda Timilsina & Erika Jorgensen, 2018. "The economics of greening Romania’s energy supply system," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 123-144, January.

    Cited by:

    1. Lauer, Markus & Leprich, Uwe & Thrän, Daniela, 2020. "Economic assessment of flexible power generation from biogas plants in Germany's future electricity system," Renewable Energy, Elsevier, vol. 146(C), pages 1471-1485.
    2. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    3. Timilsina, Govinda R. & Pang, Jun & Yang, Xi, 2021. "Macroeconomic impacts of power sector reforms in China," Energy Policy, Elsevier, vol. 157(C).

  14. Govinda R. Timilsina & Jing Cao & Mun Ho, 2018. "Carbon Tax For Achieving China’S Ndc: Simulations Of Some Design Features Using A Cge Model," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-17, August.

    Cited by:

    1. Weifeng Liu & Warwick McKibbin & Adele Morris & Peter J Wilcoxen, 2019. "Global economic and environmental outcomes of the Paris Agreement," CAMA Working Papers 2019-04, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Qianyi Du & Haoran Pan & Shuang Liang & Xiaoxue Liu, 2023. "Can Green Credit Policies Accelerate the Realization of the Dual Carbon Goal in China? Examination Based on an Endogenous Financial CGE Model," IJERPH, MDPI, vol. 20(5), pages 1-26, March.
    3. Yuan, Yongna & Duan, Hongbo & Tsvetanov, Tsvetan G., 2020. "Synergizing China's energy and carbon mitigation goals: General equilibrium modeling and policy assessment," Energy Economics, Elsevier, vol. 89(C).
    4. Pang, Jun & Timilsina, Govinda, 2021. "How would an emissions trading scheme affect provincial economies in China: Insights from a computable general equilibrium model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Weitzel, Matthias & Vandyck, Toon & Rey Los Santos, Luis & Tamba, Marie & Temursho, Umed & Wojtowicz, Krzysztof, 2023. "A comprehensive socio-economic assessment of EU climate policy pathways," Ecological Economics, Elsevier, vol. 204(PA).

  15. Govinda R Timilsina and Mike Toman, 2018. "Carbon Pricing and Cross-Border Electricity Trading for Climate Change Mitigation in South Asia," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).

    Cited by:

    1. Timilsina,Govinda R. & Deluque Curiel,Ilka Fabiana & Chattopadhyay,Debabrata, 2021. "How Much Does Latin America Gain from Enhanced Cross-Border Electricity Trade in the Short Run ?," Policy Research Working Paper Series 9692, The World Bank.
    2. Timilsina,Govinda R. & Deluque Curiel,Ilka Fabiana, 2020. "Power System Implications of Subsidy Removal, Regional Electricity Trade, and Carbon Constraints in MENA Economies," Policy Research Working Paper Series 9297, The World Bank.
    3. Nepal, Rabindra & Paija, Nirash, 2019. "Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy," Energy Policy, Elsevier, vol. 132(C), pages 771-781.
    4. Timilsina, Govinda R. & Deluque Curiel, Ilka Fabiana, 2023. "Subsidy removal, regional trade and CO2 mitigation in the electricity sector in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 177(C).
    5. Renato Passaro & Ivana Quinto & Giuseppe Scandurra & Antonio Thomas, 2020. "How Do Energy Use and Climate Change Affect Fast-Start Finance? A Cross-Country Empirical Investigation," Sustainability, MDPI, vol. 12(22), pages 1-23, November.

  16. Tooraj Jamasb & Rabindra Nepal & Govinda R. Timilsina, 2017. "A Quarter Century Effort Yet to Come of Age: A Survey of Electricity Sector Reform in Developing Countries," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).

    Cited by:

    1. Schabek, Tomasz, 2020. "The financial performance of sustainable power producers in emerging markets," Renewable Energy, Elsevier, vol. 160(C), pages 1408-1419.
    2. Imam, M. & Jamasb, T. & Llorca, M. & Llorca, M., 2018. "Power Sector Reform and Corruption: Evidence from Electricity Industry in Sub-Saharan Africa," Cambridge Working Papers in Economics 1801, Faculty of Economics, University of Cambridge.
    3. Jean-Claude Berthélemy & Arnaud Millien, 2018. "Impact of Decentralized Electrification Projects on Sustainable Development: A Meta-Analysis," Post-Print halshs-01965653, HAL.
    4. Andrea Bastianin & Paolo Castelnovo & Massimo Florio, 2018. "Evaluating regulatory reform of network industries: a survey of empirical models based on categorical proxies," Papers 1810.03348, arXiv.org.
    5. Jamasb, Tooraj & Thakur, Tripta & Bag, Baidyanath, 2018. "Smart electricity distribution networks, business models, and application for developing countries," Energy Policy, Elsevier, vol. 114(C), pages 22-29.
    6. Lisa Bagnoli & Salvador Bertomeu-Sanchez & Antonio Estache & Maria Vagliasindi, 2021. "Does the ownership of utilities matter for social outcomes? A survey of the evidence for developing countries," ULB Institutional Repository 2013/335116, ULB -- Universite Libre de Bruxelles.
    7. Rabindra Nepal & Flavio Menezes, 2017. "Regulatory Reforms in Small Energy Systems: Experience from Australia's Northern Territory Electricity Market," Economic Papers, The Economic Society of Australia, vol. 36(3), pages 300-316, September.
    8. Rabindra Nepal & Lawrence Cram & Tooraj Jamasb & Anupama Sen, 2017. "Small systems, big targets: power sector reforms and renewable energy development in small electricity systems," Working Papers 2017/08, Institut d'Economia de Barcelona (IEB).
    9. Blagrave, Patrick & Furceri, Davide, 2021. "The macroeconomic effects of electricity-sector privatization," Energy Economics, Elsevier, vol. 100(C).
    10. Asantewaa, Adwoa & Jamasb, Tooraj & Llorca, Manuel, 2020. "Electricity Sector Reform Performance in Sub-Saharan Africa: A Parametric Distance Function Approach," Working Papers 14-2020, Copenhagen Business School, Department of Economics.
    11. Nepal, Rabindra & Jamasb, Tooraj & Sen, Anupama, 2018. "Small systems, big targets: Power sector reforms and renewable energy in small systems," Energy Policy, Elsevier, vol. 116(C), pages 19-29.
    12. Malhotra, Abhishek, 2022. "Trade-offs and synergies in power sector policy mixes: The case of Uttar Pradesh, India," Energy Policy, Elsevier, vol. 164(C).
    13. Xuemei Zhenga & Flavio Menezes & Rabindra Nepal, 2020. "In Between the State and the Market: An Empirical Assessment of the Early Achievements of China’s 2015 Electricity Reform," Discussion Papers Series 633, School of Economics, University of Queensland, Australia.
    14. Morgane De Halleux & Antonio Estache & Tomas Serebrisky, 2019. "Governance Choices and Policy Outcomes in the Latin American and Caribbean Electricity Sector," Working Papers ECARES 2019-08, ULB -- Universite Libre de Bruxelles.
    15. Rohan Best & Paul J. Burke, 2017. "The Importance of Government Effectiveness for Transitions toward Greater Electrification in Developing Countries," Energies, MDPI, vol. 10(9), pages 1-17, August.
    16. Moshiri, Saeed & Martinez Santillan, Miguel Alfonso, 2018. "The welfare effects of energy price changes due to energy market reform in Mexico," Energy Policy, Elsevier, vol. 113(C), pages 663-672.
    17. Lisa Bagnoli & Salvador Bertomeu & Antonio Estache & Maria Vagliasindi, 2020. "Are the Poor Better Off with Public or Private Utilities ?A Survey of the Academic Evidence on Developing Economies," Working Papers ECARES 2020-24, ULB -- Universite Libre de Bruxelles.
    18. She, Zhen-Yu & Meng, Gang & Xie, Bai-Chen & O'Neill, Eoghan, 2020. "The effectiveness of the unbundling reform in China’s power system from a dynamic efficiency perspective," Applied Energy, Elsevier, vol. 264(C).
    19. Juan C. Percino-Picazo & Armando R. Llamas-Terres & Federico A. Viramontes-Brown, 2021. "Analysis of Restructuring the Mexican Electricity Sector to Operate in a Wholesale Energy Market," Energies, MDPI, vol. 14(11), pages 1-26, June.
    20. Bayliss, Kate & Pollen, Gabriel, 2021. "The power paradigm in practice: A critical review of developments in the Zambian electricity sector," World Development, Elsevier, vol. 140(C).
    21. Ramírez, José Carlos & Ortiz-Arango, Francisco & Rosellón, Juan, 2021. "Impact of Mexico's energy reform on consumer welfare," Utilities Policy, Elsevier, vol. 70(C).
    22. Dertinger, Andrea & Hirth, Lion, 2020. "Reforming the electric power industry in developing economies evidence on efficiency and electricity access outcomes," Energy Policy, Elsevier, vol. 139(C).
    23. Michael Pollitt, 2021. "Measuring the Impact of Electricity Market Reform in a Chinese Context," Working Papers EPRG2111, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    24. Enriquez, Alejandra & Ramirez, Jose Carlos & Rosellon, Juan, 2019. "Costos De Generación, Inversión Y Precios Del Sector Eléctrico En México [Generation Costs, Investment And Prices In The Electricity Sector In Mexico]," MPRA Paper 98084, University Library of Munich, Germany.
    25. Ahmed, Tauqir & Bhatti, Arshad Ali, 2019. "Do power sector reforms affect electricity prices in selected Asian countries?," Energy Policy, Elsevier, vol. 129(C), pages 1253-1260.
    26. Rabindra Nepal & Flavio Menezes, 2016. "Small Energy Markets, Scattered Networks and Regulatory Reforms: The Australian Experience," Discussion Papers Series 561, School of Economics, University of Queensland, Australia.
    27. Asantewaa, Adwoa & Jamasb, Tooraj & Llorca, Manuel, 2022. "Reforming Small Electricity Systems: Market Design and Competition," Working Papers 12-2022, Copenhagen Business School, Department of Economics.
    28. Nepal, Rabindra & Phoumin, Han & Musibau, Hammed & Jamasb, Tooraj, 2022. "The socio-economic impacts of energy policy reform through the lens of the power sector – Does cross-sectional dependence matter?," Energy Policy, Elsevier, vol. 167(C).
    29. Timilsina, Govinda R. & Pang, Jun & Yang, Xi, 2021. "Macroeconomic impacts of power sector reforms in China," Energy Policy, Elsevier, vol. 157(C).
    30. Maria Guadalupe Garcia-Garza & Jeyle Ortiz-Rodriguez & Esteban Picazzo-Palencia & Nora Munguia & Luis Velazquez, 2023. "The 2013 Mexican Energy Reform in the Context of Sustainable Development Goal 7," Energies, MDPI, vol. 16(19), pages 1-24, October.

  17. Timilsina, Govinda R. & Sikharulidze, Anna & Karapoghosyan, Eduard & Shatvoryan, Suren, 2017. "Development of marginal abatement cost curves for the building sector in Armenia and Georgia," Energy Policy, Elsevier, vol. 108(C), pages 29-43.

    Cited by:

    1. Yang, Xi & Teng, Fei & Xi, Xiaoqian & Khayrullin, Egor & Zhang, Qi, 2018. "Cost–benefit analysis of China’s Intended Nationally Determined Contributions based on carbon marginal cost curves," Applied Energy, Elsevier, vol. 227(C), pages 415-425.
    2. Qingwei Shi & Hong Ren & Weiguang Cai & Jingxin Gao, 2020. "How to Set the Proper CO 2 Reduction Targets for the Provincial Building Sector of China?," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    3. Xian, Yujiao & Hu, Zhihui & Wang, Ke, 2023. "The least-cost abatement measure of carbon emissions for China's glass manufacturing industry based on the marginal abatement costs," Energy, Elsevier, vol. 284(C).
    4. Mata, Érika & Kalagasidis, Angela Sasic & Johnsson, Filip, 2018. "Contributions of building retrofitting in five member states to EU targets for energy savings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 759-774.
    5. Chu, Long & Grafton, R. Quentin & Nguyen, Hai, 2022. "A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation," Forest Policy and Economics, Elsevier, vol. 135(C).
    6. Sotiriou, Chryso & Michopoulos, Apostolos & Zachariadis, Theodoros, 2019. "On the cost-effectiveness of national economy-wide greenhouse gas emissions abatement measures," Energy Policy, Elsevier, vol. 128(C), pages 519-529.
    7. Sarıca, Kemal & Harputlugil, Gulsu U. & İnaner, Gulfem & Kollugil, Esin Tetik, 2023. "Building sector emission reduction assessment from a developing European economy: A bottom-up modelling approach," Energy Policy, Elsevier, vol. 174(C).
    8. Augustus de Melo, Conrado & Cunha, Kamyla Borges & Santiago Suárez, Gabriela Piovesan, 2022. "MEPS for air conditioners in Brazil: Regulatory developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).

  18. Hochman, Gal & Timilsina, Govinda R., 2017. "Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis," Energy Economics, Elsevier, vol. 63(C), pages 22-30.

    Cited by:

    1. Jose García-Quevedo & Xavier Massa-Camps, 2019. "Why firms invest (or not) in energy efficiency? A review of the econometric evidence," Working Papers 2019/07, Institut d'Economia de Barcelona (IEB).
    2. Guoping Ding & Jingqian Hua & Juntao Duan & Sixia Deng & Wenyu Zhang & Yifan Gong & Huaping Sun, 2022. "Research on the Strategy of Industrial Structure Optimization Driven by Green Credit Distribution," Sustainability, MDPI, vol. 14(15), pages 1-17, July.
    3. Löschel, Andreas & Lutz, Benjamin Johannes & Massier, Philipp, 2017. "Credit constraints, energy management practices, and investments in energy saving technologies: German manufacturing in close-up," ZEW Discussion Papers 17-072, ZEW - Leibniz Centre for European Economic Research.
    4. Liao, Nuo & He, Yong, 2018. "Exploring the effects of influencing factors on energy efficiency in industrial sector using cluster analysis and panel regression model," Energy, Elsevier, vol. 158(C), pages 782-795.
    5. Antonella Biscione & Dorothee Boccanfuso & Annunziata de Felice & Francesco Porcelli, 2021. "Barriers to Firms Energy Efficiency in Transition Countries," Working Papers 1014, European Centre of Peace Science, Integration and Cooperation (CESPIC), Catholic University 'Our Lady of Good Counsel'.
    6. Agyarko, Kofi A. & Opoku, Richard & Van Buskirk, Robert, 2020. "Removing barriers and promoting demand-side energy efficiency in households in Sub-Saharan Africa: A case study in Ghana," Energy Policy, Elsevier, vol. 137(C).
    7. Mainar-Toledo, M.D. & Castan, M.A. & Millán, G. & Rodin, V. & Kollmann, A. & Peccianti, F. & Annunziata, E. & Rizzi, F. & Frey, M. & Iannone, F. & Zaldua, M. & Kuittinen, H., 2022. "Accelerating sustainable and economic development via industrial energy cooperation and shared services – A case study for three European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    8. Yajima, Naonari & Arimura, Toshi H., 2022. "Promoting energy efficiency in Japanese manufacturing industry through energy audits: Role of information provision, disclosure, target setting, inspection, reward, and organizational structure," Energy Economics, Elsevier, vol. 114(C).
    9. Antonella Biscione & Annunziata de Felice & Teodoro Gallucci, 2022. "Energy Saving in Transition Economies: Environmental Activities in Manufacturing Firms," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
    10. Haider, Salman & Danish, Mohd Shadab & Sharma, Ruchi, 2019. "Assessing energy efficiency of Indian paper industry and influencing factors: A slack-based firm-level analysis," Energy Economics, Elsevier, vol. 81(C), pages 454-464.
    11. Chang, Kai & Wan, Qiong & Lou, Qichun & Chen, Yili & Wang, Weihong, 2020. "Green fiscal policy and firms’ investment efficiency: New insights into firm-level panel data from the renewable energy industry in China," Renewable Energy, Elsevier, vol. 151(C), pages 589-597.
    12. Victor A. Alcal Abraham & Elkin D. Alem n Causil & Vladimir Sousa Santos & Eliana Noriega Angarita & Julio R. G mez Sarduy, 2021. "Identification of Savings Opportunities in a Steel Manufacturing Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 11(4), pages 43-50.
    13. García-Quevedo, Jose & Jové-Llopis, Elisenda, 2021. "Environmental policies and energy efficiency investments. An industry-level analysis," Energy Policy, Elsevier, vol. 156(C).

  19. Timilsina, Govinda R. & Toman, Mike, 2016. "Potential gains from expanding regional electricity trade in South Asia," Energy Economics, Elsevier, vol. 60(C), pages 6-14.

    Cited by:

    1. Timilsina,Govinda R. & Deluque Curiel,Ilka Fabiana & Chattopadhyay,Debabrata, 2021. "How Much Does Latin America Gain from Enhanced Cross-Border Electricity Trade in the Short Run ?," Policy Research Working Paper Series 9692, The World Bank.
    2. Jia, Zhijie & Wen, Shiyan & Wang, Yao, 2023. "Power coming from the sky: Economic benefits of inter-regional power transmission in China," Energy Economics, Elsevier, vol. 119(C).
    3. Abas, N. & Kalair, A. & Khan, N. & Kalair, A.R., 2017. "Review of GHG emissions in Pakistan compared to SAARC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 990-1016.
    4. Timilsina,Govinda R. & Deluque Curiel,Ilka Fabiana, 2020. "Power System Implications of Subsidy Removal, Regional Electricity Trade, and Carbon Constraints in MENA Economies," Policy Research Working Paper Series 9297, The World Bank.
    5. Fei Guo & Bas J. Ruijven & Behnam Zakeri & Shining Zhang & Xing Chen & Changyi Liu & Fang Yang & Volker Krey & Keywan Riahi & Han Huang & Yuanbing Zhou, 2022. "Implications of intercontinental renewable electricity trade for energy systems and emissions," Nature Energy, Nature, vol. 7(12), pages 1144-1156, December.
    6. Islam, Md. Shafiqul & Al-Amin, Abul Quasem & Sarkar, Md. Sujahangir Kabir, 2021. "Energy crisis in Bangladesh: Challenges, progress, and prospects for alternative energy resources," Utilities Policy, Elsevier, vol. 71(C).
    7. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    8. Singh, Anoop & Jamasb, Tooraj & Nepal, Rabindra & Toman, Michael, 2018. "Electricity cooperation in South Asia: Barriers to cross-border trade," Energy Policy, Elsevier, vol. 120(C), pages 741-748.
    9. Tortajada, Cecilia & Saklani, Udisha, 2018. "Hydropower-based collaboration in South Asia: The case of India and Bhutan," Energy Policy, Elsevier, vol. 117(C), pages 316-325.
    10. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    11. Haque, H.M. Enamul & Dhakal, Shobhakar & Mostafa, S.M.G., 2020. "An assessment of opportunities and challenges for cross-border electricity trade for Bangladesh using SWOT-AHP approach," Energy Policy, Elsevier, vol. 137(C).
    12. Taran Fæhn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa &, 2020. "Capturing Key Energy and Emission Trends in CGE models. Assessment of Status and Remaining Challenges," Discussion Papers 936, Statistics Norway, Research Department.
    13. Nepal, Rabindra & Paija, Nirash, 2019. "Energy security, electricity, population and economic growth: The case of a developing South Asian resource-rich economy," Energy Policy, Elsevier, vol. 132(C), pages 771-781.
    14. Sebastian Cuadros & Yeny E. Rodríguez & Javier Contreras, 2023. "Determinants of the Efficiency of Electricity Generation in Latin America and Caribbean Countries Using a Cragg’s Regression Model," Energies, MDPI, vol. 16(23), pages 1-18, December.
    15. Zhiye Gao & Xin Gu & Wenjing Qin & Baoming Huang, 2021. "A Review of Models Suitable for Quantifying the Benefits of Power Connectivity in China’s Belt and Road Region," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 3(Early Vie), pages 1-4.
    16. Adeoye, Omotola & Spataru, Catalina, 2020. "Quantifying the integration of renewable energy sources in West Africa's interconnected electricity network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Jha, Amit Prakash & Mahajan, Aarushi & Singh, Sanjay Kumar & Kumar, Piyush, 2022. "Renewable energy proliferation for sustainable development: Role of cross-border electricity trade," Renewable Energy, Elsevier, vol. 201(P1), pages 1189-1199.
    18. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    19. Xu, Jin-Hua & Yi, Bo-Wen & Fan, Ying, 2020. "Economic viability and regulation effects of infrastructure investments for inter-regional electricity transmission and trade in China," Energy Economics, Elsevier, vol. 91(C).
    20. Walter Cont & Diego Barril & Agustín Carbó, 2021. "Price convergence in the Central American regional electricity market," Asociación Argentina de Economía Política: Working Papers 4455, Asociación Argentina de Economía Política.
    21. Kaura, Mohit & Arias, Mauricio E. & Benjamin, Joshua A. & Oeurng, Chantha & Cochrane, Thomas A., 2019. "Benefits of forest conservation on riverine sediment and hydropower in the Tonle Sap Basin, Cambodia," Ecosystem Services, Elsevier, vol. 39(C).
    22. Nepal, Rabindra & Phoumin, Han & Musibau, Hammed & Jamasb, Tooraj, 2022. "The socio-economic impacts of energy policy reform through the lens of the power sector – Does cross-sectional dependence matter?," Energy Policy, Elsevier, vol. 167(C).
    23. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.
    24. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    25. Aryal, Sushil & Dhakal, Shobhakar, 2022. "Medium-term assessment of cross border trading potential of Nepal's renewable energy using TIMES energy system optimization platform," Energy Policy, Elsevier, vol. 168(C).
    26. Valickova, Petra & Elms, Nicholas, 2021. "The costs of providing access to electricity in selected countries in Sub-Saharan Africa and policy implications," Energy Policy, Elsevier, vol. 148(PA).
    27. Timilsina, Govinda R. & Deluque Curiel, Ilka Fabiana, 2023. "Subsidy removal, regional trade and CO2 mitigation in the electricity sector in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 177(C).
    28. Das, Partha & Kanudia, Amit & Bhakar, Rohit & Mathur, Jyotirmay, 2022. "Intra-regional renewable energy resource variability in long-term energy system planning," Energy, Elsevier, vol. 245(C).
    29. Nikolaos E. Koltsaklis & Athanasios S. Dagoumas, 2021. "A power system scheduling model with carbon intensity and ramping capacity constraints," Operational Research, Springer, vol. 21(1), pages 647-687, March.
    30. Yue Pu & Yunting Li & Yingzi Wang, 2021. "Structure Characteristics and Influencing Factors of Cross-Border Electricity Trade: A Complex Network Perspective," Sustainability, MDPI, vol. 13(11), pages 1-25, May.

  20. Timilsina, Govinda R. & Shah, Kalim U., 2016. "Filling the gaps: Policy supports and interventions for scaling up renewable energy development in Small Island Developing States," Energy Policy, Elsevier, vol. 98(C), pages 653-662.

    Cited by:

    1. Sandu, Suwin & Yang, Muyi & Shi, Xunpeng & Chi, Yuanying, 2020. "A governance perspective on electricity industry development: The case of Papua New Guinea," Energy Policy, Elsevier, vol. 141(C).
    2. Senshaw, Dereje Azemraw & Kim, Jeong Won, 2018. "Meeting conditional targets in nationally determined contributions of developing countries: Renewable energy targets and required investment of GGGI member and partner countries," Energy Policy, Elsevier, vol. 116(C), pages 433-443.
    3. Denis Sidorov & Daniil Panasetsky & Nikita Tomin & Dmitriy Karamov & Aleksei Zhukov & Ildar Muftahov & Aliona Dreglea & Fang Liu & Yong Li, 2020. "Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region," Energies, MDPI, vol. 13(5), pages 1-18, March.
    4. Vaiaso, T.V. Jr. & Jack, M.W., 2021. "Quantifying the trade-off between percentage of renewable supply and affordability in Pacific island countries: Case study of Samoa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. León-Vielma, J.E. & Ramos-Real, F.J. & Hernández Hernández, J.F., 2022. "The collapse of Venezuela's electricity sector from an energy governance perspective," Energy Policy, Elsevier, vol. 167(C).
    6. Surroop, Dinesh & Raghoo, Pravesh & Bundhoo, Zumar M.A., 2018. "Comparison of energy systems in Small Island Developing States," Utilities Policy, Elsevier, vol. 54(C), pages 46-54.
    7. Timmons, D. & Dhunny, A.Z. & Elahee, K. & Havumaki, B. & Howells, M. & Khoodaruth, A. & Lema-Driscoll, A.K. & Lollchund, M.R. & Ramgolam, Y.K. & Rughooputh, S.D.D.V. & Surroop, D., 2019. "Cost minimization for fully renewable electricity systems: A Mauritius case study," Energy Policy, Elsevier, vol. 133(C).
    8. Liu, Jiahong & Mei, Chao & Wang, Hao & Shao, Weiwei & Xiang, Chenyao, 2018. "Powering an island system by renewable energy—A feasibility analysis in the Maldives," Applied Energy, Elsevier, vol. 227(C), pages 18-27.
    9. Nepal, Rabindra & Jamasb, Tooraj & Sen, Anupama, 2018. "Small systems, big targets: Power sector reforms and renewable energy in small systems," Energy Policy, Elsevier, vol. 116(C), pages 19-29.
    10. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    11. Bundhoo, Zumar M.A. & Shah, Kalim U. & Surroop, Dinesh, 2018. "Climate proofing island energy infrastructure systems: Framing resilience based policy interventions," Utilities Policy, Elsevier, vol. 55(C), pages 41-51.
    12. Sakah, Marriette & Diawuo, Felix Amankwah & Katzenbach, Rolf & Gyamfi, Samuel, 2017. "Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 544-557.
    13. Atkinson, Travis & Preckel, Paul V. & Gotham, Douglas, 2022. "Costs and trade-offs associated with renewable energy policies for Small Island Developing States: Case study for Jamaica," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    14. Kalim U. Shah & Mohammed Awojobi & Zakia Soomauroo, 2022. "Electric vehicle adoption in small island economies: Review from a technology transition perspective," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(4), July.
    15. Walter Leal Filho & Abdul-Lateef Balogun & Dinesh Surroop & Amanda Lange Salvia & Kapil Narula & Chunlan Li & Julian David Hunt & Andrea Gatto & Ayyoob Sharifi & Haibo Feng & Stella Tsani & Hossein Az, 2022. "Realising the Potential of Renewable Energy as a Tool for Energy Security in Small Island Developing States," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    16. Prasad, Ravita D. & Raturi, Atul, 2019. "Low carbon alternatives and their implications for Fiji's electricity sector," Utilities Policy, Elsevier, vol. 56(C), pages 1-19.
    17. Wyllie, Jamalia O.Y. & Essah, Emmanuel A. & Ofetotse, Eng L., 2018. "Barriers of solar energy uptake and the potential for mitigation solutions in Barbados," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 935-949.
    18. Raghoo, Pravesh & Surroop, Dinesh & Wolf, Franziska, 2017. "Natural gas to improve energy security in Small Island Developing States: A techno-economic analysis," Development Engineering, Elsevier, vol. 2(C), pages 92-98.
    19. Kalim U. Shah & Sashwat Roy & Wei-Ming Chen & Keron Niles & Dinesh Surroop, 2020. "Application of an Institutional Assessment and Design (IAD)-Enhanced Integrated Regional Energy Policy and Planning (IREPP) Framework to Island States," Sustainability, MDPI, vol. 12(7), pages 1-20, April.
    20. Mirosława Witkowska-Dąbrowska & Natalia Świdyńska & Agnieszka Napiórkowska-Baryła, 2023. "Reviewing the Situation and Prospects for Developing Small Renewable Energy Systems in Poland," Energies, MDPI, vol. 16(21), pages 1-27, October.
    21. Surroop, Dinesh & Raghoo, Pravesh, 2018. "Renewable energy to improve energy situation in African island states," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 176-183.
    22. Javier Mendoza-Vizcaino & Andreas Sumper & Samuel Galceran-Arellano, 2017. "PV, Wind and Storage Integration on Small Islands for the Fulfilment of the 50-50 Renewable Electricity Generation Target," Sustainability, MDPI, vol. 9(6), pages 1-29, May.
    23. Sabine, Garabedian & Avotra, Narindranjanahary & Olivia, Ricci & Sandrine, Selosse, 2020. "A macroeconomic evaluation of a carbon tax in overseas territories: A CGE model for Reunion Island," Energy Policy, Elsevier, vol. 147(C).
    24. Jingyan Fu & Artie W. Ng, 2021. "Scaling up Renewable Energy Assets: Issuing Green Bond via Structured Public-Private Collaboration for Managing Risk in an Emerging Economy," Energies, MDPI, vol. 14(11), pages 1-16, May.
    25. Bingham, Raymond D. & Agelin-Chaab, Martin & Rosen, Marc A., 2019. "Whole building optimization of a residential home with PV and battery storage in The Bahamas," Renewable Energy, Elsevier, vol. 132(C), pages 1088-1103.
    26. Surroop, Dinesh & Raghoo, Pravesh, 2017. "Energy landscape in Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 688-694.
    27. Kersey, Jessica & Blechinger, Philipp & Shirley, Rebekah, 2021. "A panel data analysis of policy effectiveness for renewable energy expansion on Caribbean islands," Energy Policy, Elsevier, vol. 155(C).
    28. Muhammad Mushafiq & Muzammil Muhammad Khan Arisar & Hanan Tariq & Stanislaw Czapp, 2023. "Energy Efficiency and Economic Policy: Comprehensive Theoretical, Empirical, and Policy Review," Energies, MDPI, vol. 16(5), pages 1-22, March.
    29. Kirsty Anantharajah, 2019. "Governing Climate Finance in Fiji: Barriers, Complexity and Interconnectedness," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    30. Raghoo, Pravesh & Surroop, Dinesh & Wolf, Franziska & Leal Filho, Walter & Jeetah, Pratima & Delakowitz, Bernd, 2018. "Dimensions of energy security in Small Island Developing States," Utilities Policy, Elsevier, vol. 53(C), pages 94-101.
    31. Chen, A.A. & Stephens, A.J. & Koon Koon, R. & Ashtine, M. & Mohammed-Koon Koon, K, 2020. "Pathways to climate change mitigation and stable energy by 100% renewable for a small island: Jamaica as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

  21. Drabik, Dusan & de Gorter, Harry & Timilsina, Govinda R., 2016. "Producing biodiesel from soybeans in Zambia: An economic analysis," Food Policy, Elsevier, vol. 59(C), pages 103-109.

    Cited by:

    1. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    2. James Nyirenda & Harriet Malabo, 2024. "Mineral and bioresource exploitation for transformation and sustainability of the chemical industry in Zambia," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.

  22. Timilsina, Govinda R. & Hochman, Gal & Fedets, Iryna, 2016. "Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms," Energy, Elsevier, vol. 106(C), pages 203-211.

    Cited by:

    1. Zhang, Dayong & Li, Jun & Ji, Qiang, 2020. "Does better access to credit help reduce energy intensity in China? Evidence from manufacturing firms," Energy Policy, Elsevier, vol. 145(C).
    2. Cardoso, Bruno J. & Amaral, Ana R. & Gaspar, Adélio R. & Gomes, Álvaro, 2023. "Exploring energy efficiency barriers and drivers In the Portuguese water sector," Energy, Elsevier, vol. 284(C).
    3. Mehdi Bensouda & Mimoun Benali, 2023. "From Fairly Good to Optimal Energy Efficiency Practices within the Moroccan Manufacturing Sector: Are Financial Resources Sufficient?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 478-488, May.
    4. Finnerty, Noel & Sterling, Raymond & Contreras, Sergio & Coakley, Daniel & Keane, Marcus M., 2018. "Defining corporate energy policy and strategy to achieve carbon emissions reduction targets via energy management in non-energy intensive multi-site manufacturing organisations," Energy, Elsevier, vol. 151(C), pages 913-929.
    5. Timilsina, Govinda R. & Sikharulidze, Anna & Karapoghosyan, Eduard & Shatvoryan, Suren, 2017. "Development of marginal abatement cost curves for the building sector in Armenia and Georgia," Energy Policy, Elsevier, vol. 108(C), pages 29-43.
    6. Otrachshenko, Vladimir & Hartwell, Christopher A. & Popova, Olga, 2023. "Energy efficiency, market competition, and quality certification: Lessons from Central Asia," Energy Policy, Elsevier, vol. 177(C).
    7. Agyarko, Kofi A. & Opoku, Richard & Van Buskirk, Robert, 2020. "Removing barriers and promoting demand-side energy efficiency in households in Sub-Saharan Africa: A case study in Ghana," Energy Policy, Elsevier, vol. 137(C).
    8. Finnerty, Noel & Sterling, Raymond & Coakley, Daniel & Contreras, Sergio & Coffey, Ronan & Keane, Marcus M., 2017. "Development of a Global Energy Management System for non-energy intensive multi-site industrial organisations: A methodology," Energy, Elsevier, vol. 136(C), pages 16-31.
    9. Wang, Liyang & Morabito, Molly & Payne, Christopher T. & Robinson, Gerald, 2020. "Identifying institutional barriers and policy implications for sustainable energy technology adoption among large organizations in California," Energy Policy, Elsevier, vol. 146(C).
    10. Cunha, Paulo & Neves, Sónia Almeida & Marques, António Cardoso & Serrasqueiro, Zélia, 2020. "Adoption of energy efficiency measures in the buildings of micro-, small- and medium-sized Portuguese enterprises11The financial support of the NECE - Research Unit in Business Science and Economics, ," Energy Policy, Elsevier, vol. 146(C).
    11. Herrera, Bernardo & Amell, Andrés & Chejne, Farid & Cacua, Karen & Manrique, Raiza & Henao, Wilson & Vallejo, Gabriel, 2017. "Use of thermal energy and analysis of barriers to the implementation of thermal efficiency measures in cement production: Exploratory study in Colombia," Energy, Elsevier, vol. 140(P1), pages 1047-1058.
    12. Oleksandr Haidai & Vladyslav Ruskykh & Nataliia Ulanova & Vira Prykhodko & Edgar Cáceres Cabana & Roman Dychkovskyi & Natalia Howaniec & Adam Smolinski, 2022. "Mine Field Preparation and Coal Mining in Western Donbas: Energy Security of Ukraine—A Case Study," Energies, MDPI, vol. 15(13), pages 1-12, June.
    13. Manrique, Raiza & Vásquez, Daniela & Vallejo, Gabriel & Chejne, Farid & Amell, Andrés A. & Herrera, Bernardo, 2018. "Analysis of barriers to the implementation of energy efficiency actions in the production of ceramics in Colombia," Energy, Elsevier, vol. 143(C), pages 575-584.
    14. Sohaib Sharif Zafar & Muhammad Fiaz & Amir Ikram & Kanwal Iqbal Khan & Umaima Mehmood Qamar, 2021. "Barriers Involve in the Energy Efficiency in the Manufacturing Industries of Pakistan," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 293-299.
    15. Sánchez, Gustavo Crespo & Monteagudo Yanes, José Pedro & Pérez, Milagros Montesino & Cabrera Sánchez, Jorge Luis & Padrón, Arturo Padrón & Haeseldonckx, Dries, 2020. "Efficiency in electromechanical drive motors and energy performance indicators for implementing a management system in balanced animal feed manufacturing," Energy, Elsevier, vol. 194(C).
    16. Joakim Haraldsson & Maria T. Johansson, 2019. "Barriers to and Drivers for Improved Energy Efficiency in the Swedish Aluminium Industry and Aluminium Casting Foundries," Sustainability, MDPI, vol. 11(7), pages 1-27, April.

  23. Timilsina, Govinda R., 2015. "Oil prices and the global economy: A general equilibrium analysis," Energy Economics, Elsevier, vol. 49(C), pages 669-675.

    Cited by:

    1. Tarek Tawfik Yousef Alkhateeb & Haider Mahmood, 2020. "The Oil Price and Trade Nexus in the Gulf Co-Operation Council Countries," Resources, MDPI, vol. 9(12), pages 1-19, November.
    2. Rajesh H. Acharya & Anver C. Sadath, 2018. "Revisiting the relationship between oil price and macro economy: Evidence from India," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2018(1), pages 173-190.
    3. Longe Adedayo Emmanuel & Adekoya Taiwo Matthew & Soyemi Caleb Olugbenga & Adekomi Idowu Jacob & Agbanuji David Adeiza, 2021. "The Asymmetric Impact of Oil Price and Electricity Consumption on Economic Growth: Evidence from Nigeria," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 9(1), pages 50-70, September.
    4. Sarwar, Suleman & Khalfaoui, Rabeh & Waheed, Rida & Dastgerdi, Hamidreza Ghorbani, 2019. "Volatility spillovers and hedging: Evidence from Asian oil-importing countries," Resources Policy, Elsevier, vol. 61(C), pages 479-488.
    5. Winchester, Niven & Ledvina, Kirby, 2017. "The impact of oil prices on bioenergy, emissions and land use," Energy Economics, Elsevier, vol. 65(C), pages 219-227.
    6. Turdyeva, Natalia, 2019. "Effects of a terms of trade shock on the Russian economy," Conference papers 333094, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Ahmed, Khalid & Bhutto, Niaz Ahmed & Kalhoro, Muhammad Ramzan, 2019. "Decomposing the links between oil price shocks and macroeconomic indicators: Evidence from SAARC region," Resources Policy, Elsevier, vol. 61(C), pages 423-432.
    8. Sarwar, Suleman & Chen, Wei & Waheed, Rida, 2017. "Electricity consumption, oil price and economic growth: Global perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 9-18.
    9. Qu, Qiushi & Wang, Limao & Cao, Zhi & Zhong, Shuai & Mou, Chufu & Sun, Yanzhi & Xiong, Chenran, 2019. "Unfolding the price effects of non-ferrous industry chain on economic development: A case study of Yunnan province," Resources Policy, Elsevier, vol. 61(C), pages 1-20.
    10. Umar Bala & Lee Chin & Ghulam Mustafa, 2022. "Threshold Effects of Oil Price and Oil Export on Trade Balance in Africa," Journal of Economic Impact, Science Impact Publishers, vol. 4(1), pages 14-27.
    11. Gbadebo Oladosu, 2015. "Oil market developments and the global economy from a general equilibrium perspective," EcoMod2015 8405, EcoMod.
    12. Wang, Qiang & Li, Rongrong, 2016. "Sino-Venezuelan oil-for-loan deal – the Chinese strategic gamble?#," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 817-822.
    13. Lin, Jie & Xiao, Hao & Chai, Jian, 2023. "Dynamic effects and driving intermediations of oil price shocks on major economies," Energy Economics, Elsevier, vol. 124(C).
    14. Shahbaz, Muhammad & Sarwar, Suleman & Chen, Wei & Malik, Muhammad Nasir, 2017. "Dynamics of electricity consumption, oil price and economic growth: Global perspective," Energy Policy, Elsevier, vol. 108(C), pages 256-270.
    15. Shrestha, Anil & Mustafa, Andy Ali & Htike, Myo Myo & You, Vithyea & Kakinaka, Makoto, 2022. "Evolution of energy mix in emerging countries: Modern renewable energy, traditional renewable energy, and non-renewable energy," Renewable Energy, Elsevier, vol. 199(C), pages 419-432.
    16. Uddin, Gazi Salah & Bekiros, Stelios & Ahmed, Ali, 2018. "The nexus between geopolitical uncertainty and crude oil markets: An entropy-based wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 30-39.
    17. Jean Andrei & Mihai Mieila & Gheorghe H. Popescu & Elvira Nica & Manole Cristina, 2016. "The Impact and Determinants of Environmental Taxation on Economic Growth Communities in Romania," Energies, MDPI, vol. 9(11), pages 1-11, November.
    18. Chul-Yong Lee & Sung-Yoon Huh, 2017. "Forecasting Long-Term Crude Oil Prices Using a Bayesian Model with Informative Priors," Sustainability, MDPI, vol. 9(2), pages 1-15, January.
    19. Troster, Victor & Shahbaz, Muhammad & Uddin, Gazi Salah, 2018. "Renewable Energy, Oil Prices, and Economic Activity: A Granger-causality in Quantiles Analysis," MPRA Paper 84194, University Library of Munich, Germany, revised 19 Jan 2018.
    20. Gong, Xiao-Li & Liu, Jian-Min & Xiong, Xiong & Zhang, Wei, 2021. "The dynamic effects of international oil price shocks on economic fluctuation," Resources Policy, Elsevier, vol. 74(C).
    21. Szulczyk, Kenneth R. & Ziaei, Sayyed Mahdi & Zhang, Changyong, 2021. "Environmental ramifications and economic viability of bioethanol production in Malaysia," Renewable Energy, Elsevier, vol. 172(C), pages 780-788.
    22. Dong, Baomin & Ma, Xili & Wang, Ningjing & Wei, Weixian, 2020. "Impacts of exchange rate volatility and international oil price shock on China's regional economy: A dynamic CGE analysis," Energy Economics, Elsevier, vol. 86(C).
    23. Suleman Sarwar & Rida Waheed & Mehnoor Amir & Muqaddas Khalid, 2018. "Role of Energy on Economy The Case of Micro to Macro Level Analysis," Economics Bulletin, AccessEcon, vol. 38(4), pages 1905-1926.
    24. Gbatu, Abimelech Paye & Wang, Zhen & Wesseh, Presley K. & Tutdel, Isaac Yak Repha, 2017. "The impacts of oil price shocks on small oil-importing economies: Time series evidence for Liberia," Energy, Elsevier, vol. 139(C), pages 975-990.

  24. Anas, Alex & Timilsina, Govinda R., 2015. "Offsetting the CO2 locked-in by roads: Suburban transit and core densification as antidotes," Economics of Transportation, Elsevier, vol. 4(1), pages 37-49.

    Cited by:

    1. Lin, Boqiang & Du, Zhili, 2017. "Can urban rail transit curb automobile energy consumption?," Energy Policy, Elsevier, vol. 105(C), pages 120-127.
    2. Quentin Max David & Moez Kilani, 2022. "Transport policies in polycentric cities," ULB Institutional Repository 2013/355063, ULB -- Universite Libre de Bruxelles.
    3. Runsen Zhang & Kakuya Matsushima & Kiyoshi Kobayashi, 2016. "Land Use, Transport, And Carbon Emissions: A Computable Urban Economic Model For Changzhou, China," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 28(3), pages 162-181, November.

  25. Dusan Drabik & Harry De Gorter & David R. Just & Govinda R. Timilsina, 2015. "The Economics of Brazil’s Ethanol-Sugar Markets, Mandates, and Tax Exemptions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(5), pages 1433-1450.

    Cited by:

    1. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    2. Pouliot, Sébastien & Babcock, Bruce A., 2017. "Feasibility of meeting increased biofuel mandates with E85," Energy Policy, Elsevier, vol. 101(C), pages 194-200.
    3. Moncada, J.A. & Verstegen, J.A. & Posada, J.A. & Junginger, M. & Lukszo, Z. & Faaij, A. & Weijnen, M., 2018. "Exploring policy options to spur the expansion of ethanol production and consumption in Brazil: An agent-based modeling approach," Energy Policy, Elsevier, vol. 123(C), pages 619-641.
    4. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    6. Karel Janda & Ladislav Krištoufek & Barbora Schererová & David Zilberman, 2021. "Price transmission in biofuel-related global agricultural networks," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(10), pages 399-408.
    7. Machado Neto, Pedro Augusto, 2021. "Why Brazil imports so much corn-based ethanol: The role of Brazilian and American ethanol blending mandates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Lima, Cristiane Rocha Albuquerque & de Melo, Gabriel Rivas & Stosic, Borko & Stosic, Tatijana, 2019. "Cross-correlations between Brazilian biofuel and food market: Ethanol versus sugar," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 687-693.
    9. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    10. Gallagher, Paul W. & Sleper, Daniel, 2016. "The market and consumer welfare effects of mid-level ethanol blends in the US fuel market," Energy Policy, Elsevier, vol. 98(C), pages 149-159.
    11. Kung, Chih-Chun & Zhang, Liguo & Kong, Fanbin, 2016. "How government subsidy leads to sustainable bioenergy development," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 275-284.
    12. Ladislav Kristoufek & Karel Janda & David Zilberman, 2015. "Co-movements of Ethanol Related Prices: Evidence from Brazil and the USA," CAMA Working Papers 2015-11, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

  26. Drabik, Dusan & de Gorter, Harry & Timilsina, Govinda R., 2014. "The effect of biodiesel policies on world biodiesel and oilseed prices," Energy Economics, Elsevier, vol. 44(C), pages 80-88.

    Cited by:

    1. Drabik, Dusan & de Gorter, Harry & Timilsina, Govinda R., 2016. "Producing biodiesel from soybeans in Zambia: An economic analysis," Food Policy, Elsevier, vol. 59(C), pages 103-109.
    2. Muhammad, Gul & Alam, Md Asraful & Mofijur, M. & Jahirul, M.I. & Lv, Yongkun & Xiong, Wenlong & Ong, Hwai Chyuan & Xu, Jingliang, 2021. "Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Joe Parcell & Yasutomo Kojima & Alice Roach & Wayne Cain, 2018. "Global Edible Vegetable Oil Market Trends," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 2(1), pages 2282-2291, January.
    4. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    6. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    7. Karel Janda & Ladislav Krištoufek & Barbora Schererová & David Zilberman, 2021. "Price transmission in biofuel-related global agricultural networks," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(10), pages 399-408.
    8. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    9. dos Santos Alves, Camila Elisa & Belarmino, Luiz Clovis & Padula, Antonio Domingos, 2017. "Feedstock diversification for biodiesel production in Brazil: Using the Policy Analysis Matrix (PAM) to evaluate the impact of the PNPB and the economic competitiveness of alternative oilseeds," Energy Policy, Elsevier, vol. 109(C), pages 297-309.
    10. Alexandre Gohin & Fabrice Levert & Agneta Forslund, 2017. "The EU-Argentinean trade dispute on biodiesel: an economic assesment," Post-Print hal-01532702, HAL.
    11. Mišečka, Tomáš & Ciaian, Pavel & Rajčániová, Miroslava & Pokrivčák, Jan, 2019. "In search of attention in agricultural commodity markets," Economics Letters, Elsevier, vol. 184(C).
    12. Franken, Jason R.V. & Irwin, Scott H. & Garcia, Philip, 2021. "Biodiesel hedging under binding renewable fuel standard mandates," Energy Economics, Elsevier, vol. 96(C).
    13. Cui, Jingbo & Martin, Jeremy I., 2017. "Impacts of US biodiesel mandates on world vegetable oil markets," Energy Economics, Elsevier, vol. 65(C), pages 148-160.

  27. Govinda Timilsina & Simon Mevel, 2013. "Biofuels and Climate Change Mitigation: A CGE Analysis Incorporating Land-Use Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(1), pages 1-19, May. See citations under working paper version above.
  28. David Zilberman & Gal Hochman & Deepak Rajagopal & Steve Sexton & Govinda Timilsina, 2013. "The Impact of Biofuels on Commodity Food Prices: Assessment of Findings," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 275-281.

    Cited by:

    1. Wu, Feng & Guan, Zhengfei & Yu, Fan & Myers, Robert J., 2013. "The spillover effects of biofuel policy on participation in the conservation reserve program," Journal of Economic Dynamics and Control, Elsevier, vol. 37(9), pages 1755-1770.
    2. Hao, Na & Colson, Gregory & Karali, Berna & Wetzstein, Michael E., 2013. "Food before Biodiesel Fuel?," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 143078, Southern Agricultural Economics Association.
    3. Condon, Nicole & Klemick, Heather & Wolverton, Ann, 2013. "Impacts of Ethanol Policy on Corn Prices: A Review and Meta-Analysis of Recent Evidence," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149940, Agricultural and Applied Economics Association.
    4. Athanasios Triantafyllou & Dimitrios Bakas & Marilou Ioakimidis, 2019. "Commodity Price Uncertainty as a Leading Indicator of Economic Activity," Working Paper series 19-03, Rimini Centre for Economic Analysis.
    5. Leucci, A. C. & Ghinoi, S. & Sgargi, D. & Wesz, V. J., Jr., 2013. "Variation and links among food and energy international prices. An analysis through VAR models from 2000 to 2012," 2013 Second Congress, June 6-7, 2013, Parma, Italy 149923, Italian Association of Agricultural and Applied Economics (AIEAA).
    6. John Baffes & Tassos Haniotis, 2016. "What Explains Agricultural Price Movements?," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(3), pages 706-721, September.
    7. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    8. John Baffes & M. Ayhan Kose & Franziska Ohnsorge & Marc Stocker, 2015. "The great plunge in oil prices: causes, consequences, and policy responses," CAMA Working Papers 2015-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    9. Ladislav Kristoufek & Karel Janda & David Zilberman, 2012. "Mutual Responsiveness of Biofuels, Fuels and Food Prices," CAMA Working Papers 2012-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Beckman, Jayson & Dyck, John & Heerman, Kari, 2017. "The Global Landscape of Agricultural Trade, 1995-2014," Economic Information Bulletin 265270, United States Department of Agriculture, Economic Research Service.
    11. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Regime-dependent topological properties of biofuels networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 86(2), pages 1-12, February.
    12. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    13. Gao, Yixuan & Malone, Trey & Schaefer, K. Aleks & Myers, Robert J., 2023. "Disentangling Short-Run COVID-19 Price Impact Pathways in the US Corn Market," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.
    14. Kocak, Emrah & Bilgili, Faik & Bulut, Umit & Kuskaya, Sevda, 2022. "Is ethanol production responsible for the increase in corn prices?," Renewable Energy, Elsevier, vol. 199(C), pages 689-696.
    15. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Food versus Fuel: Causality and Predictability in Distribution," Working Papers 2013.23, Fondazione Eni Enrico Mattei.
    16. Čermák, M. & Malec, K. & Maitah, M., 2017. "Price Volatility Modelling – Wheat: GARCH Model Application," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 9(4).
    17. Beadle, Brian, 2023. "The design and application of an agricultural sustainability index using item response theory," EconStor Theses, ZBW - Leibniz Information Centre for Economics, number 278112, July.
    18. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2017. "Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1131-1146.
    19. Dumortier, Jerome & Elobeid, Amani E. & Carriquiry, Miguel A., 2018. "Assessing the impact of closing global commodity yield gaps on food production and land-use change emissions from biofuels," 2018 Annual Meeting, August 5-7, Washington, D.C. 273875, Agricultural and Applied Economics Association.
    20. Zhuo Chen & Bo Yan & Hanwen Kang, 2022. "Dynamic correlation between crude oil and agricultural futures markets," Review of Development Economics, Wiley Blackwell, vol. 26(3), pages 1798-1849, August.
    21. Karel Janda & Štěpán Krška & Jan Průša, 2014. "Česká fotovoltaická energie: modelový odhad nákladů na její podporu [Czech Photovoltaic Energy: Model Estimation of The Costs of its Support]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(3), pages 323-346.
    22. Andrea Bastianin & Marzio Galeotti & Matteo Manera, 2013. "Biofuels and Food Prices: Searching for the Causal Link," IEFE Working Papers 55, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    23. Filip, Ondrej & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2019. "Food versus fuel: An updated and expanded evidence," Energy Economics, Elsevier, vol. 82(C), pages 152-166.
    24. Fernandez-Perez, Adrian & Frijns, Bart & Tourani-Rad, Alireza, 2016. "Contemporaneous interactions among fuel, biofuel and agricultural commodities," Energy Economics, Elsevier, vol. 58(C), pages 1-10.
    25. Timilsina, Govinda R., 2015. "Oil prices and the global economy: A general equilibrium analysis," Energy Economics, Elsevier, vol. 49(C), pages 669-675.
    26. Fernandez-Diaz, Jose M. & Morley, Bruce, 2019. "Interdependence among agricultural commodity markets, macroeconomic factors, crude oil and commodity index," Research in International Business and Finance, Elsevier, vol. 47(C), pages 174-194.
    27. Dutra, Luciana da Silva & Costa Cerqueira Pinto, Martina & Cipolatti, Eliane Pereira & Aguieiras, Erika Cristina G. & Manoel, Evelin Andrade & Greco-Duarte, Jaqueline & Guimarães Freire, Denise Maria , 2022. "How the biodiesel from immobilized enzymes production is going on: An advanced bibliometric evaluation of global research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    28. Bilgili, Faik & Kocak, Emrah & Kuskaya, Sevda & Bulut, Umit, 2022. "Co-movements and causalities between ethanol production and corn prices in the USA: New evidence from wavelet transform analysis," Energy, Elsevier, vol. 259(C).
    29. Ferris, John N., 2013. "Impacts of the Federal Energy Acts and Other Influences on Prices of Agricultural Commodities and Food," Staff Paper Series 150245, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    30. Anelise Rahmeier Seyffarth, 2016. "The Impact of Rising Ethanol Production on the Brazilian Market for Basic Food Commodities: An Econometric Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 511-536, July.
    31. Shahzad, Farrukh & Bouri, Elie & Mokni, Khaled & Ajmi, Ahdi Noomen, 2021. "Energy, agriculture, and precious metals: Evidence from time-varying Granger causal relationships for both return and volatility," Resources Policy, Elsevier, vol. 74(C).
    32. Jie Lyu & Xiaolei Li, 2019. "Effectiveness and Sustainability of Grain Price Support Policies in China," Sustainability, MDPI, vol. 11(9), pages 1-13, April.
    33. Chatalova, Lioudmila, 2016. "Market uncertainty, project specificity and policy effects on bioenergy investments: A real options approach," Studies on the Agricultural and Food Sector in Transition Economies 249857, Institute of Agricultural Development in Transition Economies (IAMO).
    34. Laure Bamière, 2014. "A spatially explicit model to analyse the regional supply of ligno-cellulosic biomass," Working Papers 2014/01, INRA, Economie Publique.
    35. Jaimes Bonilla, Richard, 2020. "Essays in macroeconomic theory and natural resources," Other publications TiSEM 48a44548-df1e-44f9-8e2e-3, Tilburg University, School of Economics and Management.
    36. Belke, Ansgar & Dreger, Christian, 2013. "The Transmission of Oil and Food Prices to Consumer Prices – Evidence for the MENA Countries," Ruhr Economic Papers 448, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    37. Ondřej Filip & Karel Janda & Ladislav Krištoufek, 2018. "Ceny biopaliv a souvisejících komodit: analýza s použitím metod minimální kostry grafu a hierarchických stromů [Prices of Biofuels and Related Commodities: an Analysis Using Methods of Minimum Span," Politická ekonomie, Prague University of Economics and Business, vol. 2018(2), pages 218-239.
    38. Chrz, Stepan & Hruby, Zdenek & Janda, Karel & Kristoufek, Ladislav, 2013. "Provazanost trhu potravin, biopaliv a fosilnich paliv [Interconnections within food, biofuel, and fossil fuel markets]," MPRA Paper 43958, University Library of Munich, Germany.
    39. Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
    40. Dority, Bree L. & Tenkorang, Frank, 2016. "Ethanol Production and Food Price: Simultaneous Estimation of Food Demand and Supply," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(1), January.
    41. Mat Rahim, Siti Rohaya, 2014. "Asymmetric Cointegration: Barley and Crude Oil Price in United States," MPRA Paper 58447, University Library of Munich, Germany.
    42. Ladislav Kristoufek & Karel Janda & David Zilberman, 2013. "Non-linear price transmission between biofuels, fuels and food commodities," Working Papers IES 2013/16, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Oct 2013.
    43. Shadbahr, Jalil & Zhang, Yan & Khan, Faisal & Hawboldt, Kelly, 2018. "Multi-objective optimization of simultaneous saccharification and fermentation for cellulosic ethanol production," Renewable Energy, Elsevier, vol. 125(C), pages 100-107.
    44. Nicholas Apergis & Sofia Eleftheriou & Dimitrios Voliotis, 2017. "Asymmetric Spillover Effects between Agricultural Commodity Prices and Biofuel Energy Prices," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 166-177.
    45. Taheripour, Farzad & Fiegel, Julie & Tyner, Wallace E., 2015. "Development of Corn Stover Biofuel: Impacts on Corn and Soybean Markets and Crop Rotation," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(1).
    46. Taheripour, Farzad & Tyner, Wallace E. & Fiegel, Julie, 2013. "Development of Corn Stover Biofuel: Impacts on Corn and Soybean Markets and Land Rotation," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 148851, Agricultural and Applied Economics Association.
    47. Lukas Vacha & Karel Janda & Ladislav Kristoufek & David Zilberman, 2012. "Time-Frequency Dynamics of Biofuels-Fuels-Food System," Papers 1209.0900, arXiv.org.
    48. Drabik, Dusan & Ciaian, Pavel & Pokrivcak, Jan, 2014. "Biofuels and vertical price transmission: the case of the U.S. corn, ethanol and food markets," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182697, European Association of Agricultural Economists.
    49. Richard Jaimes & Reyer Gerlagh, 2017. "Resource-Richness and Economic Growth in Contemporary U.S," CESifo Working Paper Series 6778, CESifo.
    50. Ansgar Belke & Christian Dreger, 2015. "The transmission of oil and food prices to consumer prices," International Economics and Economic Policy, Springer, vol. 12(1), pages 143-161, March.
    51. Pavla BLAHOVA & Karel JANDA & Ladislav KRISTOUFEK, 2014. "The perspectives for genetically modified cellulosic biofuels in the Central European conditions," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 60(6), pages 247-259.
    52. Dick, Ndukwe Agbai & Wilson, Paul, 2018. "Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 500-514.
    53. Ludwik Wicki & Kaspars Naglis-Liepa & Tadeusz Filipiak & Andrzej Parzonko & Aleksandra Wicka, 2022. "Is the Production of Agricultural Biogas Environmentally Friendly? Does the Structure of Consumption of First- and Second-Generation Raw Materials in Latvia and Poland Matter?," Energies, MDPI, vol. 15(15), pages 1-16, August.
    54. Štěpán Chrz & Karel Janda & Ladislav Krištoufek, 2014. "Modelování provázanosti trhů potravin, biopaliv a fosilních paliv [Modeling Interconnections within Food, Biofuel, and Fossil Fuel Markets]," Politická ekonomie, Prague University of Economics and Business, vol. 2014(1), pages 117-140.
    55. Dumortier, Jerome & Carriquiry, Miguel & Elobeid, Amani, 2021. "Where does all the biofuel go? Fuel efficiency gains and its effects on global agricultural production," Energy Policy, Elsevier, vol. 148(PA).
    56. Drabik, Dusan & de Gorter, Harry & Just, David R. & Timilsina, Govinda R., 2014. "An Economic Model of Brazil’s Ethanol-Sugar Markets and Impacts of Fuel Policies," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182709, European Association of Agricultural Economists.
    57. Chatalova, Lioudmila, 2016. "Market uncertainty, project specifity and policy effects on bioenergy investments: A real options approach," Studies on the Agricultural and Food Sector in Transition Economies, Leibniz Institute of Agricultural Development in Transition Economies (IAMO), volume 83, number 83.
    58. Delbianco, Fernando & Tohmé, Fernando & Stosic, Tatijana & Stosic, Borko, 2016. "Multifractal behavior of commodity markets: Fuel versus non-fuel products," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 573-580.
    59. Jamel Trabelsi & Mohamed Mehdi Jelassi & Gaye Del Lo, 2017. "A Volatility Analysis of Agricultural Commodity and Crude Oil Global Markets," Applied Economics and Finance, Redfame publishing, vol. 4(2), pages 129-140, March.
    60. Lucotte, Yannick, 2016. "Co-movements between crude oil and food prices: A post-commodity boom perspective," Economics Letters, Elsevier, vol. 147(C), pages 142-147.
    61. Mohcine Bakhat & Klaas WŸrzburg, 2013. "Price Relationships of Crude Oil and Food Commodities," Working Papers fa06-2013, Economics for Energy.
    62. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Relationship Between Prices of Food, Fuel and Biofuel," 131st Seminar, September 18-19, 2012, Prague, Czech Republic 135793, European Association of Agricultural Economists.
    63. Ladislav Kristoufek & Karel Janda & David Zilberman, 2015. "Co-movements of Ethanol Related Prices: Evidence from Brazil and the USA," CAMA Working Papers 2015-11, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    64. Suzi Kerr, 2016. "Agricultural Emissions Mitigation in New Zealand: Answers to Questions from the Parliamentary Commisioner for the Environment," Working Papers 16_16, Motu Economic and Public Policy Research.
    65. Deepayan Debnath & Madhu Khanna & Deepak Rajagopal & David Zilberman, 2019. "The Future of Biofuels in an Electrifying Global Transportation Sector: Imperative, Prospects and Challenges," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(4), pages 563-582, December.
    66. Xinru Han & Yongfu Chen & Xiudong Wang, 2022. "Impacts of China’s bioethanol policy on the global maize market: a partial equilibrium analysis to 2030," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(1), pages 147-163, February.
    67. Drabik, Dušan & Ciaian, Pavel & Pokrivčák, Ján, 2016. "The effect of ethanol policies on the vertical price transmission in corn and food markets," Energy Economics, Elsevier, vol. 55(C), pages 189-199.
    68. Gal Hochman & Scott Kaplan & Deepak Rajagopal & David Zilberman, 2012. "Biofuel and Food-Commodity Prices," Agriculture, MDPI, vol. 2(3), pages 1-10, September.
    69. Janda, Karel & Krska, Stepan & Prusa, Jan, 2014. "Odhad nákladů na podporu české fotovoltaické energie [The Estimation of the Cost of Promotion of the Czech Photovoltaic Energy]," MPRA Paper 54108, University Library of Munich, Germany.

  29. Timilsina, Govinda R. & Cornelis van Kooten, G. & Narbel, Patrick A., 2013. "Global wind power development: Economics and policies," Energy Policy, Elsevier, vol. 61(C), pages 642-652.

    Cited by:

    1. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    2. Osório, G.J. & Lujano-Rojas, J.M. & Matias, J.C.O. & Catalão, J.P.S., 2015. "A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources," Energy, Elsevier, vol. 82(C), pages 949-959.
    3. Cao, Xun & Kleit, Andrew & Liu, Chuyu, 2016. "Why invest in wind energy? Career incentives and Chinese renewable energy politics," Energy Policy, Elsevier, vol. 99(C), pages 120-131.
    4. Wu, Xiaoni & Hu, Yu & Li, Ye & Yang, Jian & Duan, Lei & Wang, Tongguang & Adcock, Thomas & Jiang, Zhiyu & Gao, Zhen & Lin, Zhiliang & Borthwick, Alistair & Liao, Shijun, 2019. "Foundations of offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 379-393.
    5. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    6. Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
    7. König, Daniel H. & Baucks, Nadine & Dietrich, Ralph-Uwe & Wörner, Antje, 2015. "Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2," Energy, Elsevier, vol. 91(C), pages 833-841.
    8. Jenniches, Simon & Worrell, Ernst & Fumagalli, Elena, 2019. "Regional economic and environmental impacts of wind power developments: A case study of a German region," Energy Policy, Elsevier, vol. 132(C), pages 499-514.
    9. Duan, J. & McKenna, A. & Van Kooten, G.C. & Liu, S., 2018. "Renewable Electricity Grids, Battery Storage and Missing Money: An Alberta Case Study," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277525, International Association of Agricultural Economists.
    10. John Dorrell & Keunjae Lee, 2021. "The Price of Wind: An Empirical Analysis of the Relationship between Wind Energy and Electricity Price across the Residential, Commercial, and Industrial Sectors," Energies, MDPI, vol. 14(12), pages 1-21, June.
    11. Narbel, Patrick A., 2013. "The likely impact of Basel III on a bank's appetite for renewable energy financing," Discussion Papers 2013/10, Norwegian School of Economics, Department of Business and Management Science.
    12. Johnston, Barry & Foley, Aoife & Doran, John & Littler, Timothy, 2020. "Levelised cost of energy, A challenge for offshore wind," Renewable Energy, Elsevier, vol. 160(C), pages 876-885.
    13. van Kooten, G. Cornelis, 2015. "All you want to know about the Economics of Wind Power," Working Papers 241693, University of Victoria, Resource Economics and Policy.
    14. Davidsson, Simon & Grandell, Leena & Wachtmeister, Henrik & Höök, Mikael, 2014. "Growth curves and sustained commissioning modelling of renewable energy: Investigating resource constraints for wind energy," Energy Policy, Elsevier, vol. 73(C), pages 767-776.
    15. Mohn, Klaus, 2016. "Undressing the emperor: A critical review of IEA’s WEO," UiS Working Papers in Economics and Finance 2016/6, University of Stavanger.
    16. van Kooten, G. Cornelis & Lynch, Rachel & Duan, Jon, 2016. "Carbon Taxes and Feed-in Tariffs: Using Screening Curves and Load Duration to Determine the Optimal Mix of Generation Assets," Working Papers 236443, University of Victoria, Resource Economics and Policy.
    17. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    18. van Kooten, G. Cornelis & Withey, Patrick & Duan, Jon, 2020. "How big a battery?," Renewable Energy, Elsevier, vol. 146(C), pages 196-204.
    19. Wancong Fu & Chong Li & Jan Ondrich & David Popp, 2018. "Technological Spillover Effects of State Renewable Energy Policy: Evidence from Patent Counts," NBER Working Papers 25390, National Bureau of Economic Research, Inc.
    20. Bastien Alonzo & Silvia Concettini & Anna Creti & Philippe Drobinski & Peter Tankov, 2022. "Profitability and Revenue Uncertainty of Wind Farms in Western Europe in Present and Future Climate," Post-Print hal-03842344, HAL.
    21. Kaivo-oja, Jari & Vehmas, Jarmo & Luukkanen, Jyrki, 2016. "Trend analysis of energy and climate policy environment: Comparative electricity production and consumption benchmark analyses of China, Euro area, European Union, and United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 464-474.
    22. Timilsina, Govinda R., 2021. "Are renewable energy technologies cost competitive for electricity generation?," Renewable Energy, Elsevier, vol. 180(C), pages 658-672.
    23. Lu, Ze-Yu & Li, Wen-Hua & Xie, Bai-Chen & Shang, Li-Feng, 2015. "Study on China’s wind power development path—Based on the target for 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 197-208.
    24. Jin, Jingliang & Zhou, Peng & Li, Chenyu & Bai, Yang & Wen, Qinglan, 2020. "Optimization of power dispatching strategies integrating management attitudes with low carbon factors," Renewable Energy, Elsevier, vol. 155(C), pages 555-568.
    25. Laudari, R. & Sapkota, B. & Banskota, K., 2018. "Validation of wind resource in 14 locations of Nepal," Renewable Energy, Elsevier, vol. 119(C), pages 777-786.
    26. Timilsina,Govinda R., 2020. "Demystifying the Costs of Electricity Generation Technologies," Policy Research Working Paper Series 9303, The World Bank.
    27. Bonou, Alexandra & Laurent, Alexis & Olsen, Stig I., 2016. "Life cycle assessment of onshore and offshore wind energy-from theory to application," Applied Energy, Elsevier, vol. 180(C), pages 327-337.
    28. Farkat Diógenes, Jamil Ramsi & Coelho Rodrigues, José & Farkat Diógenes, Maria Caroline & Claro, João, 2020. "Overcoming barriers to onshore wind farm implementation in Brazil," Energy Policy, Elsevier, vol. 138(C).
    29. Jin, Jingliang & Zhou, Peng & Zhang, Mingming & Yu, Xianyu & Din, Hao, 2018. "Balancing low-carbon power dispatching strategy for wind power integrated system," Energy, Elsevier, vol. 149(C), pages 914-924.
    30. Bastien Alonzo & Silvia Concettini & Anna Creti & Philippe Drobinski & Peter Tankov, 2022. "Profitability and Revenue Uncertainty of Wind Farms in Western Europe in Present and Future Climate," Energies, MDPI, vol. 15(17), pages 1-29, September.
    31. Koltsaklis, Nikolaos E. & Georgiadis, Michael C., 2015. "A multi-period, multi-regional generation expansion planning model incorporating unit commitment constraints," Applied Energy, Elsevier, vol. 158(C), pages 310-331.

  30. Timilsina, Govinda R. & Chisari, Omar O. & Romero, Carlos A., 2013. "Economy-wide impacts of biofuels in Argentina," Energy Policy, Elsevier, vol. 55(C), pages 636-647.

    Cited by:

    1. Kaenchan, Piyanon & Puttanapong, Nattapong & Bowonthumrongchai, Thongchart & Limskul, Kitti & Gheewala, Shabbir H., 2019. "Macroeconomic modeling for assessing sustainability of bioethanol production in Thailand," Energy Policy, Elsevier, vol. 127(C), pages 361-373.
    2. Cremonez, Paulo André & Feroldi, Michael & Feiden, Armin & Gustavo Teleken, Joel & José Gris, Diego & Dieter, Jonathan & de Rossi, Eduardo & Antonelli, Jhonatas, 2015. "Current scenario and prospects of use of liquid biofuels in South America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 352-362.
    3. Nikas, A. & Koasidis, K. & Köberle, A.C. & Kourtesi, G. & Doukas, H., 2022. "A comparative study of biodiesel in Brazil and Argentina: An integrated systems of innovation perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Alexandre Gohin & Fabrice Levert & Agneta Forslund, 2017. "The EU-Argentinean trade dispute on biodiesel: an economic assesment," Post-Print hal-01532702, HAL.
    5. Olga Solleder, 2013. "Panel Export Taxes (PET) Dataset: New Data on Export Tax Rates," IHEID Working Papers 07-2013, Economics Section, The Graduate Institute of International Studies.

  31. Luis Mundaca T & Mathilde Mansoz & Lena Neij & Govinda R. Timilsina, 2013. "Transaction costs analysis of low-carbon technologies," Climate Policy, Taylor & Francis Journals, vol. 13(4), pages 490-513, July.

    Cited by:

    1. Heindl, Peter, 2015. "The impact of administrative transaction costs in the EU emissions trading system," ZEW Discussion Papers 15-076, ZEW - Leibniz Centre for European Economic Research.
    2. Valentová, Michaela & Lízal, Lubomír & Knápek, Jaroslav, 2018. "Designing energy efficiency subsidy programmes: The factors of transaction costs," Energy Policy, Elsevier, vol. 120(C), pages 382-391.
    3. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    4. Lundmark, Robert, 2022. "Time-adjusted transaction costs for energy renovations for single-family house-owners," Energy Economics, Elsevier, vol. 114(C).
    5. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    6. Hochman, Gal & Timilsina, Govinda R., 2017. "Energy efficiency barriers in commercial and industrial firms in Ukraine: An empirical analysis," Energy Economics, Elsevier, vol. 63(C), pages 22-30.
    7. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.
    8. Ürge-Vorsatz, Diana & Kelemen, Agnes & Tirado-Herrero, Sergio & Thomas, Stefan & Thema, Johannes & Mzavanadze, Nora & Hauptstock, Dorothea & Suerkemper, Felix & Teubler, Jens & Gupta, Mukesh & Chatter, 2016. "Measuring multiple impacts of low-carbon energy options in a green economy context," Applied Energy, Elsevier, vol. 179(C), pages 1409-1426.
    9. Wolf Rogowski & Wolfram Elsner, 2021. "How economics can help mitigate climate change - a critical review and conceptual analysis of economic paradigms," Bremen Papers on Economics & Innovation 2106, University of Bremen, Faculty of Business Studies and Economics.
    10. Chu, Long & Grafton, R. Quentin & Nguyen, Hai, 2022. "A global analysis of the break-even prices to reduce atmospheric carbon dioxide via forest plantation and avoided deforestation," Forest Policy and Economics, Elsevier, vol. 135(C).
    11. Ebrahimigharehbaghi, Shima & Qian, Queena K. & Meijer, Frits M. & Visscher, Henk J., 2019. "Unravelling Dutch homeowners' behaviour towards energy efficiency renovations: What drives and hinders their decision-making?," Energy Policy, Elsevier, vol. 129(C), pages 546-561.
    12. Pardalis, Georgios & Talmar, Madis & Keskin, Duygu, 2021. "To be or not to be: The organizational conditions for launching one-stop-shops for energy related renovations," Energy Policy, Elsevier, vol. 159(C).
    13. Spyridaki, Niki-Artemis & Banaka, Stefania & Flamos, Alexandros, 2016. "Evaluating public policy instruments in the Greek building sector," Energy Policy, Elsevier, vol. 88(C), pages 528-543.
    14. Wen, Huwei & Liang, Weitao & Lee, Chien-Chiang, 2022. "Urban broadband infrastructure and green total-factor energy efficiency in China," Utilities Policy, Elsevier, vol. 79(C).
    15. Valentová, Michaela & Horák, Martin & Dvořáček, Lukáš, 2020. "Why transaction costs do not decrease over time? A case study of energy efficiency programmes in Czechia," Energy Policy, Elsevier, vol. 147(C).

  32. Biswo N. Poudel & Krishna P. Paudel & Govinda Timilsina & David Zilberman, 2012. "Providing Numbers for a Food versus Fuel Debate: An Analysis of a Future Biofuel Production Scenario," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 34(4), pages 637-668.

    Cited by:

    1. Mamun, Abdullah & Martin, Will & Tokgoz, Simla, 2019. "Reforming agricultural support for improved environmental outcomes:," IFPRI discussion papers 1891, International Food Policy Research Institute (IFPRI).
    2. Biberacher, Markus & Tum, Markus & Günther, Kurt P. & Gadocha, Sabine & Zeil, Peter & Jilani, Rehmatullah & Mansha, Muhammad, 2015. "Availability assessment of bioenergy and power plant location optimization: A case study for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 700-711.
    3. Lade, Gabriel E & Lawell, C-Y Cynthia Lin, 2015. "Mandating green: On the Design of Renewable Fuel Policies and Cost Containment Mechanisms," Institute of Transportation Studies, Working Paper Series qt5zj382t4, Institute of Transportation Studies, UC Davis.
    4. Gabriel E. Lade & C.-Y. Cynthia Lin Lawell, 2021. "The Design of Renewable Fuel Mandates and Cost Containment Mechanisms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 213-247, June.

  33. Chang, Shiyan & Zhao, Lili & Timilsina, Govinda R. & Zhang, Xiliang, 2012. "Biofuels development in China: Technology options and policies needed to meet the 2020 target," Energy Policy, Elsevier, vol. 51(C), pages 64-79.

    Cited by:

    1. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    2. Wang, Qian & Han, Kuihua & Wang, Jiamin & Gao, Jie & Lu, Chunmei, 2017. "Influence of phosphorous based additives on ash melting characteristics during combustion of biomass briquette fuel," Renewable Energy, Elsevier, vol. 113(C), pages 428-437.
    3. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    4. Ge, Jianping & Lei, Yalin, 2017. "Policy options for non-grain bioethanol in China: Insights from an economy-energy-environment CGE model," Energy Policy, Elsevier, vol. 105(C), pages 502-511.
    5. Zifeng Liang & Manli Zhang & Qingduo Mao & Bingxin Yu & Ben Ma, 2018. "Improvement of Eco-Efficiency in China: A Comparison of Mandatory and Hybrid Environmental Policy Instruments," IJERPH, MDPI, vol. 15(7), pages 1-20, July.
    6. Okudoh, Vincent & Trois, Cristina & Workneh, Tilahun & Schmidt, Stefan, 2014. "The potential of cassava biomass and applicable technologies for sustainable biogas production in South Africa: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1035-1052.
    7. Nana Geng & Yong Zhang & Yixiang Sun & Yunjian Jiang & Dandan Chen, 2015. "Forecasting China’s Annual Biofuel Production Using an Improved Grey Model," Energies, MDPI, vol. 8(10), pages 1-20, October.
    8. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    9. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," AMSE Working Papers 1548, Aix-Marseille School of Economics, France, revised 10 Nov 2015.
    10. Ebadian, Mahmood & van Dyk, Susan & McMillan, James D. & Saddler, Jack, 2020. "Biofuels policies that have encouraged their production and use: An international perspective," Energy Policy, Elsevier, vol. 147(C).
    11. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    12. Xu, Jie & Yuan, Zhenhong & Chang, Shiyan, 2018. "Long-term cost trajectories for biofuels in China projected to 2050," Energy, Elsevier, vol. 160(C), pages 452-465.
    13. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    14. Shahzad, Umer & Ferraz, Diogo & Nguyen, Huu-Huan & Cui, Lianbiao, 2022. "Investigating the spill overs and connectedness between financial globalization, high-tech industries and environmental footprints: Fresh evidence in context of China," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    15. Huijie Yan, 2015. "The Integration of Energy, Environment and Health Policies in China: A Review," Working Papers halshs-01247183, HAL.
    16. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    17. Lili Zhao & Xiliang Zhang & Jie Xu & Xunmin Ou & Shiyan Chang & Maorong Wu, 2015. "Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover," Energies, MDPI, vol. 8(5), pages 1-22, May.
    18. Zhao, Lili & Chang, Shiyan & Wang, Hailin & Zhang, Xiliang & Ou, Xunmin & Wang, Baiyu & Wu, Maorong, 2015. "Long-term projections of liquid biofuels in China: Uncertainties and potential benefits," Energy, Elsevier, vol. 83(C), pages 37-54.
    19. Ren, Jingzheng & Dong, Liang & Sun, Lu & Evan Goodsite, Michael & Dong, Lichun & Luo, Xiao & Sovacool, Benjamin K., 2015. "“Supply push” or “demand pull?”: Strategic recommendations for the responsible development of biofuel in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 382-392.

  34. Govinda R. Timilsina & John C. Beghin & Dominique van der Mensbrugghe & Simon Mevel, 2012. "The impacts of biofuels targets on land‐use change and food supply: A global CGE assessment," Agricultural Economics, International Association of Agricultural Economists, vol. 43(3), pages 315-332, May.
    See citations under working paper version above.
  35. Timilsina, Govinda R. & Csordás, Stefan & Mevel, Simon, 2011. "When does a carbon tax on fossil fuels stimulate biofuels?," Ecological Economics, Elsevier, vol. 70(12), pages 2400-2415.

    Cited by:

    1. Cantono, Simona, 2012. "Unveiling diffusion dynamics: an autocatalytic percolation model of environmental innovation diffusion and the optimal dynamic path of adoption subsidies," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201222, University of Turin.
    2. Anderson, Blake & M'Gonigle, Michael, 2012. "Does ecological economics have a future?," Ecological Economics, Elsevier, vol. 84(C), pages 37-48.
    3. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.
    4. Li, Aijun & Peng, Dan & Wang, Daoping & Yao, Xin, 2017. "Comparing regional effects of climate policies to promote non-fossil fuels in China," Energy, Elsevier, vol. 141(C), pages 1998-2012.
    5. Liu, Yang & Han, Liyan & Yin, Ziqiao & Luo, Kongyi, 2017. "A competitive carbon emissions scheme with hybrid fiscal incentives: The evidence from a taxi industry," Energy Policy, Elsevier, vol. 102(C), pages 414-422.
    6. Xiao Yu & Yingdong Xu & Meng Sun & Yanzhe Zhang, 2021. "The Green-Innovation-Inducing Effect of a Unit Progressive Carbon Tax," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    7. Timilsina, Govinda R. & Landis, Florian, 2014. "Economics of transiting to renewable energy in Morocco : a general equilibrium analysis," Policy Research Working Paper Series 6940, The World Bank.
    8. Virginie Doumax & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, tax policies and oil price: insights from a dynamic CGE model," EcoMod2013 5417, EcoMod.
    9. Junsong Jia & Jing Lei & Chundi Chen & Xu Song & Yexi Zhong, 2021. "Contribution of Renewable Energy Consumption to CO 2 Emission Mitigation: A Comparative Analysis from a Global Geographic Perspective," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
    10. Khatiwada, Dilip & Leduc, Sylvain & Silveira, Semida & McCallum, Ian, 2016. "Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 371-386.
    11. Virginie Doumax-Tagliavini & Jean-Marc Philip & Cristina Sarasa, 2013. "Biofuels, Tax Policies and Oil Prices in France: Insights from a Dynamic CGE Model," EcoMod2013 6245, EcoMod.
    12. Dumortier, Jerome & Elobeid, Amani, 2021. "Effects of a carbon tax in the United States on agricultural markets and carbon emissions from land-use change," Land Use Policy, Elsevier, vol. 103(C).
    13. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    14. Chao Bi & Jingjing Zeng & Wanli Zhang & Yonglin Wen, 2020. "Modelling the Coevolution of the Fuel Ethanol Industry, Technology System, and Market System in China: A History-Friendly Model," Energies, MDPI, vol. 13(5), pages 1-26, February.
    15. Xiao Yu & Yingdong Xu & Jian Zhang & Yue Sun, 2022. "The Synergy Green Innovation Effect of Green Innovation Subsidies and Carbon Taxes," Sustainability, MDPI, vol. 14(6), pages 1-27, March.
    16. Caurla, Sylvain & Delacote, Philippe & Lecocq, Franck & Barthès, Julien & Barkaoui, Ahmed, 2013. "Combining an inter-sectoral carbon tax with sectoral mitigation policies: Impacts on the French forest sector," Journal of Forest Economics, Elsevier, vol. 19(4), pages 450-461.
    17. Jiang, Changmin & Yang, Hangjun, 2021. "Carbon tax or sustainable aviation fuel quota," Energy Economics, Elsevier, vol. 103(C).
    18. Timilsina, Govinda R., 2012. "Economic implications of moving toward global convergence on emission intensities," Policy Research Working Paper Series 6115, The World Bank.
    19. Qiu, Cheng & Colson, Gregory & Zhang, Zibin & Wetzstein, Michael E., 2011. "An Ethanol Blend Wall Shift is Prone to Increase Petroleum Gasoline Demand," 2011 Annual Meeting, February 5-8, 2011, Corpus Christi, Texas 98795, Southern Agricultural Economics Association.
    20. Stefan Walter, 2018. "The Regional Impact of Biofuel Economics," Margin: The Journal of Applied Economic Research, National Council of Applied Economic Research, vol. 12(3), pages 369-386, August.
    21. Thepkhun, Panida & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko & Shrestha, Ram M., 2013. "Thailand's Low-Carbon Scenario 2050: The AIM/CGE analyses of CO2 mitigation measures," Energy Policy, Elsevier, vol. 62(C), pages 561-572.
    22. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    23. Somorin, Tosin Onabanjo & Kolios, Athanasios J., 2017. "Prospects of deployment of Jatropha biodiesel-fired plants in Nigeria’s power sector," Energy, Elsevier, vol. 135(C), pages 726-739.
    24. Daphné Lorne & Stéphane Tchung-Ming, 2012. "The French biofuels mandates under cost uncertainty - an assesment based on robust optimization," Working Papers hal-03206367, HAL.
    25. Zhu, Tong & Curtis, John & Clancy, Matthew, 2019. "Promoting agricultural biogas and biomethane production: Lessons from cross-country studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    26. Timilsina, Govinda R., 2013. "How much does an increase in oil prices affect the global economy ? some insights from a general equilibrium analysis," Policy Research Working Paper Series 6515, The World Bank.
    27. Jiang, Changmin, 2021. "Aviation tax and railway subsidy: An integrated policy," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 1-13.

  36. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.

    Cited by:

    1. Finn Roar Aune & Kristine Grimsrud & Lars Lindholt & Knut Einar Rosendahl & Halvor Briseid Storrøsten, 2016. "Oil consumption subsidy removal in OPEC and other Non-OECD countries. Oil market impacts and welfare effects," Discussion Papers 846, Statistics Norway, Research Department.
    2. Ali Jadidzadeh & Apostolos Serletis, "undated". "Sectoral Interfuel Substitution in Canada: An Application of NQ Flexible Functional Forms," Working Papers 2015-04, Department of Economics, University of Calgary, revised 13 Apr 2015.
    3. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    4. Xingang, Zhao & Pingkuo, Liu, 2013. "Substitution among energy sources: An empirical analysis on biomass energy for fossil fuel of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 194-202.
    5. Kodjovi EKLOU & Stefania FABRIZIO & Roland Kangni KPODAR, 2019. "Export competitiveness - Fuel Price nexus in Developing Countries: Real or False Concern?," Working Papers P249, FERDI.
    6. Hoy, Kyle A. & Wrenn, Douglas H., 2018. "Unconventional energy, taxation, and interstate welfare: An analysis of Pennsylvania's severance tax policy," Energy Economics, Elsevier, vol. 73(C), pages 53-65.
    7. Finn Roar Aune & Ann Christin Bøeng & Snorre Kverndokk & Lars Lindholt & Knut Einar Rosendahl, 2015. "Fuel Efficiency Improvements - Feedback Mechanisms and Distributional Effects in the Oil Market," CESifo Working Paper Series 5478, CESifo.
    8. Patrick Schulte & Heinz Welsch & Sascha Rexhäuser, 2016. "ICT and the Demand for Energy: Evidence from OECD Countries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(1), pages 119-146, January.
    9. Ma, Chunbo & Stern, David I., 2016. "Long-run estimates of interfuel and interfactor elasticities," Resource and Energy Economics, Elsevier, vol. 46(C), pages 114-130.
    10. Peñasco, Cristina & Anadón, Laura Díaz, 2023. "Assessing the effectiveness of energy efficiency measures in the residential sector gas consumption through dynamic treatment effects: Evidence from England and Wales," Energy Economics, Elsevier, vol. 117(C).
    11. Dongfeng Chang & Apostolos Serletis, 2014. "The Demand For Gasoline: Evidence From Household Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 291-313, March.
    12. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
    13. Ji, Qiang & Geng, Jiang-Bo & Tiwari, Aviral Kumar, 2018. "Information spillovers and connectedness networks in the oil and gas markets," Energy Economics, Elsevier, vol. 75(C), pages 71-84.
    14. Wang, Qunwei & Zhang, Cheng & Cai, Wanhuan, 2017. "Factor substitution and energy productivity fluctuation in China: A parametric decomposition analysis," Energy Policy, Elsevier, vol. 109(C), pages 181-190.
    15. Saam, Marianne & Papageorgiou, Chris & Schulte, Patrick, 2014. "Elasticity of Substitution between Clean and Dirty Energy Inputs - A Macroeconomic Perspective," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100414, Verein für Socialpolitik / German Economic Association.
    16. Rowland, Christopher S. & Mjelde, James W. & Dharmasena, Senarath, 2017. "Policy implications of considering pre-commitments in U.S. aggregate energy demand system," Energy Policy, Elsevier, vol. 102(C), pages 406-413.
    17. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    18. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    19. Serletis, Apostolos & Xu, Libo, 2022. "Interfuel substitution: A copula approach," Journal of Commodity Markets, Elsevier, vol. 28(C).
    20. Shenghao Feng & Keyu Zhang & Xiujian Peng, 2021. "Elasticity of Substitution Between Electricity and Non-Electric Energy in the Context of Carbon Neutrality in China," Centre of Policy Studies/IMPACT Centre Working Papers g-323, Victoria University, Centre of Policy Studies/IMPACT Centre.
    21. Ferreira, Paulo & Almeida, Dora & Dionísio, Andreia & Bouri, Elie & Quintino, Derick, 2022. "Energy markets – Who are the influencers?," Energy, Elsevier, vol. 239(PA).
    22. Liu, Weisheng & Lin, Boqiang, 2021. "Electrification of rails in China: Its impact on energy conservation and emission reduction," Energy, Elsevier, vol. 226(C).
    23. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    24. Nurul Hossain, A.K.M. & Serletis, Apostolos, 2017. "A century of interfuel substitution," Journal of Commodity Markets, Elsevier, vol. 8(C), pages 28-42.
    25. Shahiduzzaman, Md. & Layton, Allan, 2015. "Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis," Applied Energy, Elsevier, vol. 150(C), pages 25-35.

  37. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    See citations under working paper version above.
  38. Govinda R. Timilsina & Hari B. Dulal, 2011. "Urban Road Transportation Externalities: Costs and Choice of Policy Instruments," The World Bank Research Observer, World Bank, vol. 26(1), pages 162-191, February.

    Cited by:

    1. Brown, Zachary S. & Oueslati, Walid & Silva, Jérôme, 2016. "Links between urban structure and life satisfaction in a cross-section of OECD metro areas," Ecological Economics, Elsevier, vol. 129(C), pages 112-121.
    2. Faryal Ali & Zawar Hussain Khan & Khurram Shehzad Khattak & Thomas Aaron Gulliver & Akhtar Nawaz Khan, 2022. "A Microscopic Heterogeneous Traffic Flow Model Considering Distance Headway," Mathematics, MDPI, vol. 11(1), pages 1-20, December.
    3. Keeling, David J., 2013. "Transport research challenges in Latin America," Journal of Transport Geography, Elsevier, vol. 29(C), pages 103-104.
    4. Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris & Berg,Claudia N. & Deichmann,Uwe & Liu,Yishen & Selod,Harris, 2015. "Transport policies and development," Policy Research Working Paper Series 7366, The World Bank.
    5. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    6. Tesemma, Tewodros, 2023. "Encouraging adoption of fuel-efficient vehicles – A policy reform evaluation from Ethiopia," Working Papers in Economics 838, University of Gothenburg, Department of Economics.

  39. Timilsina, Govinda R. & Mevel, Simon & Shrestha, Ashish, 2011. "Oil price, biofuels and food supply," Energy Policy, Elsevier, vol. 39(12), pages 8098-8105.
    See citations under working paper version above.
  40. Cheng, Jay J. & Timilsina, Govinda R., 2011. "Status and barriers of advanced biofuel technologies: A review," Renewable Energy, Elsevier, vol. 36(12), pages 3541-3549.

    Cited by:

    1. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    2. Albarelli, Juliana Q. & Santos, Diego T. & Ensinas, Adriano V. & Marechal, François & Cocero, María J. & Meireles, M. Angela A., 2018. "Product diversification in the sugarcane biorefinery through algae growth and supercritical CO2 extraction: Thermal and economic analysis," Renewable Energy, Elsevier, vol. 129(PB), pages 776-785.
    3. Caires, Anderson R.L. & Scherer, Marisa D. & De Souza, José E. & Oliveira, Samuel L. & M'Peko, Jean-Claude, 2014. "The role of viscosity in the fluorescence behavior of the diesel/biodiesel blends," Renewable Energy, Elsevier, vol. 63(C), pages 388-391.
    4. Materazzi, Massimiliano & Holt, Andrew, 2019. "Experimental analysis and preliminary assessment of an integrated thermochemical process for production of low-molecular weight biofuels from municipal solid waste (MSW)," Renewable Energy, Elsevier, vol. 143(C), pages 663-678.
    5. Durán-Romero, Gemma & López, Ana M. & Beliaeva, Tatiana & Ferasso, Marcos & Garonne, Christophe & Jones, Paul, 2020. "Bridging the gap between circular economy and climate change mitigation policies through eco-innovations and Quintuple Helix Model," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    6. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    7. Zhang, Qi & Zhang, Pengfei & Pei, Z.J. & Wang, Donghai, 2013. "Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature," Renewable Energy, Elsevier, vol. 60(C), pages 127-136.
    8. Bhutto, Abdul Waheed & Qureshi, Khadija & Harijan, Khanji & Abro, Rashid & Abbas, Tauqeer & Bazmi, Aqeel Ahmed & Karim, Sadia & Yu, Guangren, 2017. "Insight into progress in pre-treatment of lignocellulosic biomass," Energy, Elsevier, vol. 122(C), pages 724-745.
    9. Cho, Seolhee & Kim, Jiyong, 2019. "Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops," Energy, Elsevier, vol. 185(C), pages 527-540.
    10. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    11. Adenle, Ademola A. & Haslam, Gareth E. & Lee, Lisa, 2013. "Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries," Energy Policy, Elsevier, vol. 61(C), pages 182-195.
    12. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    13. Guragain, Yadhu N. & Wang, Donghai & Vadlani, Praveen V., 2016. "Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading," Renewable Energy, Elsevier, vol. 96(PA), pages 832-842.
    14. Amarnath Krishnamoorthy & Cristina Rodriguez & Andy Durrant, 2022. "Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    15. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Shaheen, Mohamed & Choi, Michael & Ang, Woon & Zhao, Yupeng & Xing, James & Yang, Ray & Xing, Jida & Zhang, Jian & Chen, Jie, 2013. "Application of low-intensity pulsed ultrasound to increase bio-ethanol production," Renewable Energy, Elsevier, vol. 57(C), pages 462-468.
    17. Cheryll C. Launio & Constancio A. Asis, Jr. & Rowena G. Manalili & Evelyn F. Javier, 2013. "Economic Analysis of Rice Straw Management Alternatives and Understanding Farmers' Choices," EEPSEA Research Report rr2013031, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2013.
    18. Mohamed A. Hassaan & Ahmed El Nemr & Marwa R. Elkatory & Ahmed Eleryan & Safaa Ragab & Amany El Sikaily & Antonio Pantaleo, 2021. "Enhancement of Biogas Production from Macroalgae Ulva latuca via Ozonation Pretreatment," Energies, MDPI, vol. 14(6), pages 1-16, March.
    19. Collet, Pierre & Lardon, Laurent & Hélias, Arnaud & Bricout, Stéphanie & Lombaert-Valot, Isabelle & Perrier, Béatrice & Lépine, Olivier & Steyer, Jean-Philippe & Bernard, Olivier, 2014. "Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements," Renewable Energy, Elsevier, vol. 71(C), pages 525-533.
    20. Gabardo, Sabrina & Rech, Rosane & Rosa, Carlos Augusto & Ayub, Marco Antônio Záchia, 2014. "Dynamics of ethanol production from whey and whey permeate by immobilized strains of Kluyveromyces marxianus in batch and continuous bioreactors," Renewable Energy, Elsevier, vol. 69(C), pages 89-96.
    21. Caires, A.R.L. & Lima, V.S. & Oliveira, S.L., 2012. "Quantification of biodiesel content in diesel/biodiesel blends by fluorescence spectroscopy: Evaluation of the dependence on biodiesel feedstock," Renewable Energy, Elsevier, vol. 46(C), pages 137-140.
    22. Do, Truong Xuan & Lim, Young-il, 2016. "Techno-economic comparison of three energy conversion pathways from empty fruit bunches," Renewable Energy, Elsevier, vol. 90(C), pages 307-318.
    23. Onumaegbu, C. & Mooney, J. & Alaswad, A. & Olabi, A.G., 2018. "Pre-treatment methods for production of biofuel from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 16-26.
    24. German, Laura & Goetz, Ariane & Searchinger, Tim & Oliveira, Gustavo de L.T. & Tomei, Julia & Hunsberger, Carol & Weigelt, Jes, 2017. "Sine Qua Nons of sustainable biofuels: Distilling implications of under-performance for national biofuel programs," Energy Policy, Elsevier, vol. 108(C), pages 806-817.
    25. Chia, Shir Reen & Ong, Hwai Chyuan & Chew, Kit Wayne & Show, Pau Loke & Phang, Siew-Moi & Ling, Tau Chuan & Nagarajan, Dillirani & Lee, Duu-Jong & Chang, Jo-Shu, 2018. "Sustainable approaches for algae utilisation in bioenergy production," Renewable Energy, Elsevier, vol. 129(PB), pages 838-852.
    26. Thomassen, Gwenny & Van Dael, Miet & Lemmens, Bert & Van Passel, Steven, 2017. "A review of the sustainability of algal-based biorefineries: Towards an integrated assessment framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 876-887.
    27. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    28. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    29. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    30. Bakhtyari, Ali & Rahimpour, Mohammad Reza & Raeissi, Sona, 2020. "Cobalt-molybdenum catalysts for the hydrodeoxygenation of cyclohexanone," Renewable Energy, Elsevier, vol. 150(C), pages 443-455.
    31. Romaní, Aloia & Ruiz, Héctor A. & Teixeira, José A. & Domingues, Lucília, 2016. "Valorization of Eucalyptus wood by glycerol-organosolv pretreatment within the biorefinery concept: An integrated and intensified approach," Renewable Energy, Elsevier, vol. 95(C), pages 1-9.
    32. Ossai, Chinedu I. & Boswell, Brian & Davies, Ian J., 2014. "Sustainable asset integrity management: Strategic imperatives for economic renewable energy generation," Renewable Energy, Elsevier, vol. 67(C), pages 143-152.
    33. Katia A. Figueroa-Rodríguez & Francisco Hernández-Rosas & Benjamín Figueroa-Sandoval & Joel Velasco-Velasco & Noé Aguilar Rivera, 2019. "What Has Been the Focus of Sugarcane Research? A Bibliometric Overview," IJERPH, MDPI, vol. 16(18), pages 1-15, September.
    34. Rassoulinejad-Mousavi, Seyed Moein & Mao, Yijin & Zhang, Yuwen, 2018. "Reducing greenhouse gas emissions in Sandia methane-air flame by using a biofuel," Renewable Energy, Elsevier, vol. 128(PA), pages 313-323.
    35. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    36. Koponen, Kati & Soimakallio, Sampo & Tsupari, Eemeli & Thun, Rabbe & Antikainen, Riina, 2013. "GHG emission performance of various liquid transportation biofuels in Finland in accordance with the EU sustainability criteria," Applied Energy, Elsevier, vol. 102(C), pages 440-448.
    37. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    38. Alves, Magno José & Nascimento, Suellen Mendonça & Pereira, Iara Gomes & Martins, Maria Inês & Cardoso, Vicelma Luiz & Reis, Miria, 2013. "Biodiesel purification using micro and ultrafiltration membranes," Renewable Energy, Elsevier, vol. 58(C), pages 15-20.
    39. Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
    40. Wei, Maogui & Zhu, Wanbin & Xie, Guanghui & Lestander, Torbjörn A. & Xiong, Shaojun, 2015. "Cassava stem wastes as potential feedstock for fuel ethanol production: A basic parameter study," Renewable Energy, Elsevier, vol. 83(C), pages 970-978.
    41. Neto, Ana Maria Pereira & Sotana de Souza, Rafael Augusto & Leon-Nino, Amanda Denisse & da Costa, Joana D'arc Aparecida & Tiburcio, Rodolfo Sbrolini & Nunes, Thaís Abreu & Sellare de Mello, Thaís Cris, 2013. "Improvement in microalgae lipid extraction using a sonication-assisted method," Renewable Energy, Elsevier, vol. 55(C), pages 525-531.
    42. Bahadar, Ali & Bilal Khan, M., 2013. "Progress in energy from microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 128-148.
    43. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.

  41. Timilsina, Govinda R. & Shrestha, Ashish, 2011. "How much hope should we have for biofuels?," Energy, Elsevier, vol. 36(4), pages 2055-2069.

    Cited by:

    1. Franco, Carlos J. & Zapata, Sebastian & Dyner, Isaac, 2015. "Simulation for assessing the liberalization of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 298-307.
    2. Joshi, Girdhar & Pandey, Jitendra K. & Rana, Sravendra & Rawat, Devendra S., 2017. "Challenges and opportunities for the application of biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 850-866.
    3. Kumar, S. & Shrestha, Pujan & Abdul Salam, P., 2013. "A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 822-836.
    4. Ge, Jianping & Lei, Yalin & Tokunaga, Suminori, 2014. "Non-grain fuel ethanol expansion and its effects on food security: A computable general equilibrium analysis for China," Energy, Elsevier, vol. 65(C), pages 346-356.
    5. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations," Energy Policy, Elsevier, vol. 47(C), pages 384-397.
    6. Kou, Nannan & Zhao, Fu, 2011. "Techno-economical analysis of a thermo-chemical biofuel plant with feedstock and product flexibility under external disturbances," Energy, Elsevier, vol. 36(12), pages 6745-6752.
    7. Fasahati, Peyman & Liu, J. Jay, 2015. "Economic, energy, and environmental impacts of alcohol dehydration technology on biofuel production from brown algae," Energy, Elsevier, vol. 93(P2), pages 2321-2336.
    8. McPhail, Lihong Lu & Babcock, Bruce A., 2012. "Impact of US biofuel policy on US corn and gasoline price variability," Energy, Elsevier, vol. 37(1), pages 505-513.
    9. Tsita, Katerina G. & Pilavachi, Petros A., 2013. "Evaluation of next generation biomass derived fuels for the transport sector," Energy Policy, Elsevier, vol. 62(C), pages 443-455.
    10. Pu Peng & Wenguang Zhou, 2014. "The Next Generation Feedstock of Biofuel: Jatropha or Chlorella as Assessed by Their Life-Cycle Inventories," Agriculture, MDPI, vol. 4(3), pages 1-14, July.
    11. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    12. Mahmoud, A. & Shuhaimi, M., 2013. "Systematic methodology for optimal enterprise network design between bio-refinery and petroleum refinery for the production of transportation fuels," Energy, Elsevier, vol. 59(C), pages 224-232.
    13. Soares Dias, Ana Paula & Bernardo, Joana & Felizardo, Pedro & Neiva Correia, Maria Joana, 2012. "Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites," Energy, Elsevier, vol. 41(1), pages 344-353.
    14. Heyne, Stefan & Harvey, Simon, 2013. "Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios," Applied Energy, Elsevier, vol. 101(C), pages 203-212.
    15. Dorina Pojani & Dominic Stead, 2015. "Sustainable Urban Transport in the Developing World: Beyond Megacities," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
    16. Timilsina, Govinda R., 2015. "Oil prices and the global economy: A general equilibrium analysis," Energy Economics, Elsevier, vol. 49(C), pages 669-675.
    17. Moschini, Giancarlo & Cui, Jingbo & Lapan, Harvey, 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," ISU General Staff Papers 201201010800001094, Iowa State University, Department of Economics.
    18. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    19. Debajit Palit & Ramit Malhotra & Sanjay Mande, 2017. "Enhancing viability of biofuel-based decentralized power projects for rural electrification in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 263-283, February.
    20. Nonhebel, Sanderine, 2012. "Global food supply and the impacts of increased use of biofuels," Energy, Elsevier, vol. 37(1), pages 115-121.
    21. Peeters, Paul M. & Eijgelaar, Eke, 2014. "Tourism's climate mitigation dilemma: Flying between rich and poor countries," Tourism Management, Elsevier, vol. 40(C), pages 15-26.
    22. Ling, Jiayin & Tian, Yuan & de Toledo, Renata Alves & Shim, Hojae, 2017. "Cost reduction for the lipid production from distillery and domestic mixed wastewater by Rhodosporidium toruloides via the reutilization of spent seed culture medium," Energy, Elsevier, vol. 136(C), pages 135-141.
    23. Alejos Altamirano, Carlos Alberto & Yokoyama, Lídia & de Medeiros, José Luiz & de Queiroz Fernandes Araújo, Ofélia, 2016. "Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment," Applied Energy, Elsevier, vol. 184(C), pages 1246-1263.
    24. Connolly, D. & Mathiesen, B.V. & Ridjan, I., 2014. "A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system," Energy, Elsevier, vol. 73(C), pages 110-125.
    25. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    26. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    27. Li, Tongzhe & McCluskey, Jill J., 2017. "Consumer preferences for second-generation bioethanol," Energy Economics, Elsevier, vol. 61(C), pages 1-7.
    28. Li, Qi & Hu, Guiping, 2014. "Supply chain design under uncertainty for advanced biofuel production based on bio-oil gasification," Energy, Elsevier, vol. 74(C), pages 576-584.
    29. Acheampong, Michael & Ertem, Funda Cansu & Kappler, Benjamin & Neubauer, Peter, 2017. "In pursuit of Sustainable Development Goal (SDG) number 7: Will biofuels be reliable?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 927-937.
    30. Puri, Munish & Abraham, Reinu E. & Barrow, Colin J., 2012. "Biofuel production: Prospects, challenges and feedstock in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6022-6031.
    31. Kato, Karina Yoshie Martins & Flexor, Georges Gérard & Recalde, Marína Yesica, 2012. "The biodiesel market and public policy: a comparative analysis of Argentina and Brazil," Revista CEPAL, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL), December.
    32. Debnath, Deepayan & Whistance, Jarrett & Thompson, Wyatt, 2017. "The causes of two-way U.S.–Brazil ethanol trade and the consequences for greenhouse gas emission," Energy, Elsevier, vol. 141(C), pages 2045-2053.
    33. Ribeiro, Barbara E. & Quintanilla, Miguel A., 2015. "Transitions in biofuel technologies: An appraisal of the social impacts of cellulosic ethanol using the Delphi method," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 53-68.
    34. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    35. Schneider, T. & Graeff-Hönninger, S. & French, W.T. & Hernandez, R. & Merkt, N. & Claupein, W. & Hetrick, M. & Pham, P., 2013. "Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents," Energy, Elsevier, vol. 61(C), pages 34-43.
    36. Harish, B.S & Janaki Ramaiah, M. & Babu Uppuluri, Kiran, 2015. "Bioengineering strategies on catalysis for the effective production of renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 533-547.
    37. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    38. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    39. Poder, Thomas G. & He, Jie, 2017. "Willingness to pay for a cleaner car: The case of car pollution in Quebec and France," Energy, Elsevier, vol. 130(C), pages 48-54.
    40. Malça, João & Freire, Fausto, 2012. "Addressing land use change and uncertainty in the life-cycle assessment of wheat-based bioethanol," Energy, Elsevier, vol. 45(1), pages 519-527.
    41. Yoshimoto, Y. & Kinoshita, E. & Shanbu, L. & Ohmura, T., 2013. "Influence of 1-butanol addition on diesel combustion with palm oil methyl ester/gas oil blends," Energy, Elsevier, vol. 61(C), pages 44-51.
    42. Afshin Ghorbani & Mohammad Reza Rahimpour & Younes Ghasemi & Sona Raeissi, 2018. "The Biodiesel of Microalgae as a Solution for Diesel Demand in Iran," Energies, MDPI, vol. 11(4), pages 1-17, April.
    43. Ribeiro, Barbara Esteves, 2013. "Beyond commonplace biofuels: Social aspects of ethanol," Energy Policy, Elsevier, vol. 57(C), pages 355-362.
    44. Duarte, Alexandra E. & Sarache, William A. & Costa, Yasel J., 2014. "A facility-location model for biofuel plants: Applications in the Colombian context," Energy, Elsevier, vol. 72(C), pages 476-483.
    45. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    46. Markovska, Natasa & Duić, Neven & Mathiesen, Brian Vad & Guzović, Zvonimir & Piacentino, Antonio & Schlör, Holger & Lund, Henrik, 2016. "Addressing the main challenges of energy security in the twenty-first century – Contributions of the conferences on Sustainable Development of Energy, Water and Environment Systems," Energy, Elsevier, vol. 115(P3), pages 1504-1512.
    47. Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.

  42. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2010. "Modelling energy demand of developing countries: Are the specific features adequately captured?," Energy Policy, Elsevier, vol. 38(4), pages 1979-1990, April.

    Cited by:

    1. Parikh, Priti & Chaturvedi, Sankalp & George, Gerard, 2012. "Empowering change: The effects of energy provision on individual aspirations in slum communities," Energy Policy, Elsevier, vol. 50(C), pages 477-485.
    2. Koppelaar, Rembrandt H.E.M. & Keirstead, James & Shah, Nilay & Woods, Jeremy, 2016. "A review of policy analysis purpose and capabilities of electricity system models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1531-1544.
    3. Hache, Emmanuel & Palle, Angélique, 2019. "Renewable energy source integration into power networks, research trends and policy implications: A bibliometric and research actors survey analysis," Energy Policy, Elsevier, vol. 124(C), pages 23-35.
    4. Ouedraogo, Nadia S., 2017. "Africa energy future: Alternative scenarios and their implications for sustainable development strategies," Energy Policy, Elsevier, vol. 106(C), pages 457-471.
    5. Malla, Sunil, 2013. "Household energy consumption patterns and its environmental implications: Assessment of energy access and poverty in Nepal," Energy Policy, Elsevier, vol. 61(C), pages 990-1002.
    6. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    7. Bernstein, Ronald & Madlener, Reinhard, 2015. "Short- and long-run electricity demand elasticities at the subsectoral level: A cointegration analysis for German manufacturing industries," Energy Economics, Elsevier, vol. 48(C), pages 178-187.
    8. Hesselink, Laurens X.W. & Chappin, Emile J.L., 2019. "Adoption of energy efficient technologies by households – Barriers, policies and agent-based modelling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 29-41.
    9. Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
    10. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series wp-2017-56, World Institute for Development Economic Research (UNU-WIDER).
    11. Alipour, M. & Hafezi, R. & Amer, M. & Akhavan, A.N., 2017. "A new hybrid fuzzy cognitive map-based scenario planning approach for Iran's oil production pathways in the post–sanction period," Energy, Elsevier, vol. 135(C), pages 851-864.
    12. Ramchandra Bhandari & Surendra Pandit, 2018. "Electricity as a Cooking Means in Nepal—A Modelling Tool Approach," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    13. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    14. Riva, Fabio & Gardumi, Francesco & Tognollo, Annalisa & Colombo, Emanuela, 2019. "Soft-linking energy demand and optimisation models for local long-term electricity planning: An application to rural India," Energy, Elsevier, vol. 166(C), pages 32-46.
    15. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    16. Yusof, Ahmad & Raman, Maznah & Nopiah, Zulkifli, 2013. "Modeling of the Malaysian Crude Oil System," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 47(1), pages 125-130.
    17. Keshavarzian, Maryam & Kamali Anaraki, Sara & Zamani, Mehrzad & Erfanifard, Ali, 2012. "Projections of oil demand in road transportation sector on the basis of vehicle ownership projections, worldwide: 1972–2020," Economic Modelling, Elsevier, vol. 29(5), pages 1979-1985.
    18. Malla, Sunil, 2022. "An outlook of end-use energy demand based on a clean energy and technology transformation of the household sector in Nepal," Energy, Elsevier, vol. 238(PB).
    19. Alfaro, Jose F. & Miller, Shelie & Johnson, Jeremiah X. & Riolo, Rick R., 2017. "Improving rural electricity system planning: An agent-based model for stakeholder engagement and decision making," Energy Policy, Elsevier, vol. 101(C), pages 317-331.
    20. Stefanie Meilinger, 2022. "Research–Practice–Collaborations in Engineering," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(4), pages 1727-1734, August.
    21. Behrang, M.A. & Assareh, E. & Ghalambaz, M. & Assari, M.R. & Noghrehabadi, A.R., 2011. "Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm)," Energy, Elsevier, vol. 36(9), pages 5649-5654.
    22. Steven Parker, 2020. "Gasoline Demand in Middle-Income Countries," Economics Bulletin, AccessEcon, vol. 40(4), pages 2790-2801.
    23. van Ruijven, Bas J. & Schers, Jules & van Vuuren, Detlef P., 2012. "Model-based scenarios for rural electrification in developing countries," Energy, Elsevier, vol. 38(1), pages 386-397.
    24. van Ruijven, Bas J. & van Vuuren, Detlef P. & de Vries, Bert J.M. & Isaac, Morna & van der Sluijs, Jeroen P. & Lucas, Paul L. & Balachandra, P., 2011. "Model projections for household energy use in India," Energy Policy, Elsevier, vol. 39(12), pages 7747-7761.
    25. Agnolucci, Paolo & De Lipsis, Vincenzo & Arvanitopoulos, Theodoros, 2017. "Modelling UK sub-sector industrial energy demand," Energy Economics, Elsevier, vol. 67(C), pages 366-374.
    26. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    27. Manu, Emmanuel Kwaku & Chen, George S. & Asante, Dennis, 2022. "Regional heterogeneities in the absorptive capacity of renewable energy deployment in Africa," Renewable Energy, Elsevier, vol. 193(C), pages 554-564.
    28. Mohammad Al-Smairan & Moayyad Shawaqfah & Fares AlMomani, 2020. "Techno-Economic Investigation of an Integrated Boiler–Solar Water Heating/Cooling System: A Case Study," Energies, MDPI, vol. 14(1), pages 1-18, December.
    29. Steinbuks, Jevgenijs, 2019. "Assessing the accuracy of electricity production forecasts in developing countries," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1175-1185.
    30. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    31. Roberts, Simon H. & Foran, Barney D. & Axon, Colin J. & Warr, Benjamin S. & Goddard, Nigel H., 2018. "Consequences of selecting technology pathways on cumulative carbon dioxide emissions for the United Kingdom," Applied Energy, Elsevier, vol. 228(C), pages 409-425.
    32. Lee, N.C. & Leal, V.M.S., 2014. "A review of energy planning practices of members of the Economic Community of West African States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 202-220.
    33. Pukšec, Tomislav & Mathiesen, Brian Vad & Novosel, Tomislav & Duić, Neven, 2014. "Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia," Energy, Elsevier, vol. 76(C), pages 198-209.
    34. Sarah Feron, 2016. "Sustainability of Off-Grid Photovoltaic Systems for Rural Electrification in Developing Countries: A Review," Sustainability, MDPI, vol. 8(12), pages 1-26, December.
    35. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    36. Ghaboulian Zare, Sara & Alipour, Mohammad & Hafezi, Mehdi & Stewart, Rodney A. & Rahman, Anisur, 2022. "Examining wind energy deployment pathways in complex macro-economic and political settings using a fuzzy cognitive map-based method," Energy, Elsevier, vol. 238(PA).
    37. Nepal, Rabindra & Sharma, Bikash & al Irsyad, M. Indra, 2020. "Scarce data and energy research: Estimating regional energy consumption in complex economies," Economic Analysis and Policy, Elsevier, vol. 65(C), pages 139-152.
    38. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    39. Kannika Duangnate & James W. Mjelde, 2022. "The Role of Pre-Commitments and Engle Curves in Thailand’s Aggregate Energy Demand System," Energies, MDPI, vol. 15(4), pages 1-16, February.

  43. Govinda Timilsina & Christophe Gouvello & Massamba Thioye & Felix Dayo, 2010. "Clean Development Mechanism Potential and Challenges in Sub-Saharan Africa," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(1), pages 93-111, January.

    Cited by:

    1. Magda Moner‐Girona & Daniel Puig & Yacob Mulugetta & Ioannis Kougias & Jafaru AbdulRahman & Sándor Szabó, 2018. "Next generation interactive tool as a backbone for universal access to electricity," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    2. Theresa Stahlke, 2020. "The impact of the Clean Development Mechanism on developing countries’ commitment to mitigate climate change and its implications for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 107-125, January.
    3. Benjamin T. Wood & Lindsay C. Stringer & Andrew J. Dougill & Claire H. Quinn, 2018. "Socially Just Triple-Wins? A Framework for Evaluating the Social Justice Implications of Climate Compatible Development," Sustainability, MDPI, vol. 10(1), pages 1-20, January.
    4. Rowlands, Ian, 2011. "Co-impacts of energy-related climate change mitigation in Africa’s least developed countries: the evidence base and research needs," LSE Research Online Documents on Economics 37575, London School of Economics and Political Science, LSE Library.
    5. Moner-Girona, M. & Solano-Peralta, M. & Lazopoulou, M. & Ackom, E.K. & Vallve, X. & Szabó, S., 2018. "Electrification of Sub-Saharan Africa through PV/hybrid mini-grids: Reducing the gap between current business models and on-site experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1148-1161.
    6. Jean Charles Hourcade & Michel Aglietta & Baptiste Perrissin-Fabert, 2014. "Transition to a Low-Carbon society and sustainable economic recovery, a monetary-based financial device," Post-Print hal-01692593, HAL.
    7. Tang, Keyi & Shen, Yingjiao, 2020. "Do China-financed dams in Sub-Saharan Africa improve the region's social welfare? A case study of the impacts of Ghana's Bui Dam," Energy Policy, Elsevier, vol. 136(C).
    8. Ian Rowlands, 2011. "Ancillary impacts of energy-related climate change mitigation options in Africa’s least developed countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 16(7), pages 749-773, October.
    9. Amjath-Babu, T.S. & Krupnik, Timothy J. & Kaechele, Harald & Aravindakshan, Sreejith & Sietz, Diana, 2016. "Transitioning to groundwater irrigated intensified agriculture in Sub-Saharan Africa: An indicator based assessment," Agricultural Water Management, Elsevier, vol. 168(C), pages 125-135.
    10. Chirambo, Dumisani, 2016. "Addressing the renewable energy financing gap in Africa to promote universal energy access: Integrated renewable energy financing in Malawi," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 793-803.
    11. Willenbockel, Dirk, 2014. "Reflections on the prospects for pro-poor low-carbon growth," MPRA Paper 69863, University Library of Munich, Germany.
    12. Ian H. Rowlands, 2011. "Co-impacts of energy-related climate change mitigation in Africa�s least developed countries: the evidence base and research needs," GRI Working Papers 39, Grantham Research Institute on Climate Change and the Environment.
    13. Dumisani Chirambo, 2017. "Enhancing Climate Change Resilience Through Microfinance: Redefining the Climate Finance Paradigm to Promote Inclusive Growth in Africa," Journal of Developing Societies, , vol. 33(1), pages 150-173, March.
    14. Oliver Hensengerth, 2013. "Chinese hydropower companies and environmental norms in countries of the global South: the involvement of Sinohydro in Ghana’s Bui Dam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(2), pages 285-300, April.
    15. Adenle, Ademola A. & Manning, Dale T. & Arbiol, Joseph, 2017. "Mitigating Climate Change in Africa: Barriers to Financing Low-Carbon Development," World Development, Elsevier, vol. 100(C), pages 123-132.
    16. Ayodele Odusola, "undated". "Achieving the Sustainable Development Goals in Africa in the context of complex global development cooperation," UNDP Africa Research Discussion Papers 307329, United Nations Development Programme (UNDP).
    17. Simon Bisore & Walter Hecq, 2012. "Regulated (CDM) and voluntary carbon offset schemes as carbon offset markets: competition or complementarity?," Working Papers CEB 12-016, ULB -- Universite Libre de Bruxelles.

  44. Serletis, Apostolos & Timilsina, Govinda R. & Vasetsky, Olexandr, 2010. "Interfuel substitution in the United States," Energy Economics, Elsevier, vol. 32(3), pages 737-745, May.

    Cited by:

    1. Considine, Timothy & Manderson, Edward, 2014. "The role of energy conservation and natural gas prices in the costs of achieving California's renewable energy goals," Energy Economics, Elsevier, vol. 44(C), pages 291-301.
    2. Considine, Timothy J. & Manderson, Edward J.M., 2015. "The cost of solar-centric renewable portfolio standards and reducing coal power generation using Arizona as a case study," Energy Economics, Elsevier, vol. 49(C), pages 402-419.
    3. Suh, Dong Hee, 2016. "Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach," Energy, Elsevier, vol. 102(C), pages 24-30.
    4. Lin, Boqiang & Wesseh, Presley K., 2013. "Estimates of inter-fuel substitution possibilities in Chinese chemical industry," Energy Economics, Elsevier, vol. 40(C), pages 560-568.
    5. Zhang, Yi & Ji, Qiang & Fan, Ying, 2018. "The price and income elasticity of China's natural gas demand: A multi-sectoral perspective," Energy Policy, Elsevier, vol. 113(C), pages 332-341.
    6. Xingang, Zhao & Pingkuo, Liu, 2013. "Substitution among energy sources: An empirical analysis on biomass energy for fossil fuel of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 194-202.
    7. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    8. Michielsen, Thomas O., 2014. "Brown backstops versus the green paradox," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 87-110.
    9. Considine, Timothy J., 2018. "Estimating concave substitution possibilities with non-stationary data using the dynamic linear logit demand model," Economic Modelling, Elsevier, vol. 72(C), pages 22-30.
    10. Wesseh, Presley K. & Lin, Boqiang, 2016. "Factor demand, technical change and inter-fuel substitution in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 979-991.
    11. Lin, Boqiang & Zhu, Runqing & Raza, Muhammad Yousaf, 2022. "Fuel substitution and environmental sustainability in India: Perspectives of technical progress," Energy, Elsevier, vol. 261(PB).
    12. Opeyemi Bello, Mufutau & Adebola Solarin, Sakiru & Yee Yen, Yuen, 2018. "Interfuel Substitution, Hydroelectricity Consumption and CO2 Emissions Mitigation in Malaysia: Evidence from a Transcendental Logarithm (trans-log) Cost Function Framework," Working Papers 4, Department of Economics, University of Ilorin.
    13. Blazquez, Jorge & Galeotti, Marzio & Manzano, Baltasar & Pierru, Axel & Pradhan, Shreekar, 2021. "Effects of Saudi Arabia’s economic reforms: Insights from a DSGE model," Economic Modelling, Elsevier, vol. 95(C), pages 145-169.
    14. Ravago, Majah-Leah V. & Fabella, Raul V. & Jandoc, Karl Robert L. & Frias, Renzi G. & Magadia, J. Kathleen P., 2021. "Gauging the market potential for natural gas among Philippine manufacturing firms," Energy, Elsevier, vol. 237(C).
    15. Orlov, Anton & Aaheim, Asbjørn, 2017. "Economy-wide effects of international and Russia's climate policies," Energy Economics, Elsevier, vol. 68(C), pages 466-477.
    16. Bardazzi, Rossella & Oropallo, Filippo & Pazienza, Maria Grazia, 2015. "Do manufacturing firms react to energy prices? Evidence from Italy," Energy Economics, Elsevier, vol. 49(C), pages 168-181.
    17. Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
    18. KITAMURA Toshihiko & MANAGI Shunsuke, 2016. "Substitution between Purchased Electricity and Fuel for Onsite Power Generation in the Manufacturing Industry: Plant level analysis in Japan," Discussion papers 16007, Research Institute of Economy, Trade and Industry (RIETI).
    19. Li, Jianglong & Lin, Boqiang, 2016. "Inter-factor/inter-fuel substitution, carbon intensity, and energy-related CO2 reduction: Empirical evidence from China," Energy Economics, Elsevier, vol. 56(C), pages 483-494.
    20. Timothy J. Considine & Edward J. M. Manderson, 2013. "The Cost of Solar-Centric Renewable Portfolio Standards," Economics Discussion Paper Series 1323, Economics, The University of Manchester.
    21. Maura Allaire and Stephen P. A. Brown, 2015. "The Green Paradox of U.S. Biofuel Subsidies: Impact on Greenhouse Gas Emissions," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    22. Rowland, Christopher S. & Mjelde, James W. & Dharmasena, Senarath, 2017. "Policy implications of considering pre-commitments in U.S. aggregate energy demand system," Energy Policy, Elsevier, vol. 102(C), pages 406-413.
    23. Yang, Zhenbing & Shao, Shuai & Yang, Lili & Miao, Zhuang, 2018. "Improvement pathway of energy consumption structure in China's industrial sector: From the perspective of directed technical change," Energy Economics, Elsevier, vol. 72(C), pages 166-176.
    24. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    25. Xie, Chunping & Hawkes, Adam D., 2015. "Estimation of inter-fuel substitution possibilities in China's transport industry using ridge regression," Energy, Elsevier, vol. 88(C), pages 260-267.
    26. Thomas Michielsen, 2013. "Brown Backstops Versus the Green Paradox," OxCarre Working Papers 108, Oxford Centre for the Analysis of Resource Rich Economies, University of Oxford.
    27. Lin, Boqiang & Atsagli, Philip, 2017. "Inter-fuel substitution possibilities in South Africa: A translog production function approach," Energy, Elsevier, vol. 121(C), pages 822-831.
    28. Matthew Kotchen & Arik Levinson, 2022. "When Can Benefit Cost Analyses Ignore Secondary Markets?," Working Papers gueconwpa~22-22-05, Georgetown University, Department of Economics.
    29. Atalla, Tarek & Blazquez, Jorge & Hunt, Lester C. & Manzano, Baltasar, 2017. "Prices versus policy: An analysis of the drivers of the primary fossil fuel mix," Energy Policy, Elsevier, vol. 106(C), pages 536-546.
    30. Lin, Boqiang & Atsagli, Philip & Dogah, Kingsley E., 2016. "Ghanaian energy economy: Inter-production factors and energy substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1260-1269.
    31. Shahiduzzaman, M.D. & Alam, Khorshed, 2014. "Interfuel substitution in Australia: a way forward to achieve environmental sustainability," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(1), January.
    32. Li, Jianglong & Sun, Chuanwang, 2018. "Towards a low carbon economy by removing fossil fuel subsidies?," China Economic Review, Elsevier, vol. 50(C), pages 17-33.
    33. Bello, Mufutau Opeyemi & Solarin, Sakiru Adebola & Yen, Yuen Yee, 2018. "Hydropower and potential for interfuel substitution: The case of electricity sector in Malaysia," Energy, Elsevier, vol. 151(C), pages 966-983.
    34. Shahiduzzaman, Md. & Layton, Allan, 2015. "Changes in CO2 emissions over business cycle recessions and expansions in the United States: A decomposition analysis," Applied Energy, Elsevier, vol. 150(C), pages 25-35.
    35. Dong Hee Suh & Charles B. Moss, 2017. "Dynamic adjustment of ethanol demand to crude oil prices: implications for mandated ethanol usage," Empirical Economics, Springer, vol. 52(4), pages 1587-1607, June.
    36. Serletis, Apostolos & Timilsina, Govinda & Vasetsky, Olexandr, 2011. "International evidence on aggregate short-run and long-run interfuel substitution," Energy Economics, Elsevier, vol. 33(2), pages 209-216, March.
    37. Wesseh, Presley K. & Lin, Boqiang & Appiah, Michael Owusu, 2013. "Delving into Liberia's energy economy: Technical change, inter-factor and inter-fuel substitution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 122-130.
    38. Apostolos Serletis & Libo Xu, "undated". "Volatility and a Century of Energy Markets Dynamics," Working Papers 2016-29, Department of Economics, University of Calgary, revised 28 Jan 2016.
    39. Liu, Boying & Shumway, C. Richard & Yoder, Jonathan K., 2017. "Lifecycle economic analysis of biofuels: Accounting for economic substitution in policy assessment," Energy Economics, Elsevier, vol. 67(C), pages 146-158.

  45. Parry, Ian W.H. & Timilsina, Govinda R., 2010. "How should passenger travel in Mexico City be priced?," Journal of Urban Economics, Elsevier, vol. 68(2), pages 167-182, September.
    See citations under working paper version above.
  46. Timilsina, Govinda R. & Dulal, Hari B., 2009. "Regulatory instruments to control environmental externalities from the transport sector," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 41, pages 80-112.

    Cited by:

    1. Blackman, Allen & Osakwe, Rebecca & Alpizar, Francisco, 2010. "Fuel tax incidence in developing countries: The case of Costa Rica," Energy Policy, Elsevier, vol. 38(5), pages 2208-2215, May.
    2. Hala Abou- Ali & Alban Thomas, 2012. "Regulating traffic to reduce air pollution in Greater Cairo, Egypt," Chapters, in: Hala Abou-Ali (ed.), Economic Incentives and Environmental Regulation, chapter 5, pages 95-119, Edward Elgar Publishing.
    3. Perkins, Richard & Neumayer, Eric, 2012. "Does the ‘California effect’ operate across borders? trading- and investing-up in automobile emission standards," LSE Research Online Documents on Economics 42097, London School of Economics and Political Science, LSE Library.
    4. Silitonga, A.S. & Atabani, A.E. & Mahlia, T.M.I., 2012. "Review on fuel economy standard and label for vehicle in selected ASEAN countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1683-1695.
    5. Barbieri, Nicolò, 2015. "Investigating the impacts of technological position and European environmental regulation on green automotive patent activity," Ecological Economics, Elsevier, vol. 117(C), pages 140-152.
    6. Li, Hui & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2021. "Policy analysis for high-speed rail in China: Evolution, evaluation, and expectation," Transport Policy, Elsevier, vol. 106(C), pages 37-53.
    7. David Anthoff & Robert Hahn, 2010. "Government failure and market failure: on the inefficiency of environmental and energy policy," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 26(2), pages 197-224, Summer.

  47. Govinda R. Timilsina, 2009. "Carbon tax under the Clean Development Mechanism: a unique approach for reducing greenhouse gas emissions in developing countries," Climate Policy, Taylor & Francis Journals, vol. 9(2), pages 139-154, January.

    Cited by:

    1. Chen, Y.-H. Henry & Timilsina, Govinda R., 2012. "Economic implications of reducing carbon emissions from energy use and industrial processes in Brazil," Policy Research Working Paper Series 6135, The World Bank.
    2. Christoph Böhringer & Thomas F. Rutherford & Marco Springmann, 2013. "Clean-Development Investments: An Incentive-Compatible CGE Modelling Framework," Working Papers V-354-13, University of Oldenburg, Department of Economics, revised Mar 2013.
    3. Pauline Lacour & Jean-Christophe Simon, 2011. "Developing economies in the current climate regime : new prospects for resilience and sustainability ? The case of CDM projects in Asia," Post-Print halshs-00676809, HAL.
    4. Dinan Li & Yuge Huang & Chengzhou Guo & Haitao Wang & Jianwei Jia & Lu Huang, 2023. "Low-Carbon Optimization Design for Low-Temperature Granary Roof Insulation in Different Ecological Grain Storage Zones in China," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    5. Xiangsheng Dou & Huanying Cui, 2017. "Low-carbon society creation and socio-economic structural transition in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 1577-1599, October.
    6. Pauline Lacour & Jean-Christophe Simon, 2012. "Quelle intégration des pays en développement dans le régime climatique ? Le Mécanisme pour un Développement Propre en Asie," Post-Print halshs-00763231, HAL.
    7. Bortoletto, Wagner Wilson & Pacagnella Junior, Antonio Carlos & Cabello, Otavio Gomes, 2023. "Exploring the scientific literature on clean development mechanisms: A bibliometric analysis," Energy Policy, Elsevier, vol. 183(C).
    8. Wang, Tao & Foliente, Greg & Song, Xinyi & Xue, Jiawei & Fang, Dongping, 2014. "Implications and future direction of greenhouse gas emission mitigation policies in the building sector of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 520-530.

  48. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.

    Cited by:

    1. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
    2. Suhaiza Zailani & Mohammad Iranmanesh & Sunghyup Sean Hyun & Mohd Helmi Ali, 2019. "Applying the Theory of Consumption Values to Explain Drivers’ Willingness to Pay for Biofuels," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    3. Meiting Tu & Ye Li & Lei Bao & Yuao Wei & Olivier Orfila & Wenxiang Li & Dominique Gruyer, 2019. "Logarithmic Mean Divisia Index Decomposition of CO 2 Emissions from Urban Passenger Transport: An Empirical Study of Global Cities from 1960–2001," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    4. Liu, Yang & Wang, Yu & Huo, Hong, 2013. "Temporal and spatial variations in on-road energy use and CO2 emissions in China, 1978–2008," Energy Policy, Elsevier, vol. 61(C), pages 544-550.
    5. Wei, Yigang & Liang, Xin & Xu, Liang & Kou, Gang & Chevallier, Julien, 2023. "Trading, storage, or penalty? Uncovering firms' decision-making behavior in the Shanghai emissions trading scheme: Insights from agent-based modeling," Energy Economics, Elsevier, vol. 117(C).
    6. Abdul-Manan, Amir F.N. & Baharuddin, Azizan & Chang, Lee Wei, 2015. "Application of theory-based evaluation for the critical analysis of national biofuel policy: A case study in Malaysia," Evaluation and Program Planning, Elsevier, vol. 52(C), pages 39-49.
    7. Wang, Miao & Feng, Chao, 2021. "The consequences of industrial restructuring, regional balanced development, and market-oriented reform for China's carbon dioxide emissions: A multi-tier meta-frontier DEA-based decomposition analysi," Technological Forecasting and Social Change, Elsevier, vol. 164(C).
    8. Prapatchon Jariyapan, 2012. "Determination of transport CO2 emission using the General Method of Moments: Empirical evidence from 16 countries," The Empirical Econometrics and Quantitative Economics Letters, Faculty of Economics, Chiang Mai University, vol. 1(2), pages 1-12, June.
    9. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    10. Samir Saidi, 2021. "Freight transport and energy consumption: What impact on carbon dioxide emissions and environmental quality in MENA countries?," Economic Change and Restructuring, Springer, vol. 54(4), pages 1119-1145, November.
    11. Zhang, Wencheng & Peng, Shuijun & Sun, Chuanwang, 2015. "CO2 emissions in the global supply chains of services: An analysis based on a multi-regional input–output model," Energy Policy, Elsevier, vol. 86(C), pages 93-103.
    12. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    13. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    14. Cai, Bofeng & Yang, Weishan & Cao, Dong & Liu, Lancui & Zhou, Ying & Zhang, Zhansheng, 2012. "Estimates of China's national and regional transport sector CO2 emissions in 2007," Energy Policy, Elsevier, vol. 41(C), pages 474-483.
    15. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2013. "Indicators for sustainable energy development: A multivariate cointegration and causality analysis from Tunisian road transport sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 34-43.
    16. Espinosa Valderrama, Mónica & Cadena Monroy, Ángela Inés & Behrentz Valencia, Eduardo, 2019. "Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector," Energy Policy, Elsevier, vol. 124(C), pages 111-122.
    17. Nasreen, Samia & Mbarek, Mounir Ben & Atiq-ur-Rehman, Muhammad, 2020. "Long-run causal relationship between economic growth, transport energy consumption and environmental quality in Asian countries: Evidence from heterogeneous panel methods," Energy, Elsevier, vol. 192(C).
    18. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    19. Rafaa Mraïhi & Riadh Harizi, 2014. "Road Freight Transport and Carbon Dioxide Emissions: Policy Options for Tunisia," Energy & Environment, , vol. 25(1), pages 79-92, February.
    20. Zhao, Jiaxin & Mattauch, Linus, 2021. "When standards have better distributional consequences than carbon taxes," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242351, Verein für Socialpolitik / German Economic Association.
    21. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2021. "Investigating the nexus among transport, economic growth and environmental degradation: Evidence from panel ARDL approach," Transport Policy, Elsevier, vol. 109(C), pages 61-71.
    22. Suyi Kim, 2019. "Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    23. Paudel, Krishna P. & Timilsina, Govinda R., 2010. "Would There Be Surplus Grains for Biofuels? An Assessment of Agro-economic Factors and Biofuel Production Potential at the Global Level," Staff Papers 113125, Louisiana State University, Department of Agricultural Economics and Agribusiness.
    24. Zhimin Peng & Qunqi Wu, 2020. "Evaluation of the relationship between energy consumption, economic growth, and CO2 emissions in China’ transport sector: the FMOLS and VECM approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(7), pages 6537-6561, October.
    25. Shahbaz, Muhammad & Abosedra, Salah & Kumar, Mantu & Abbas, Qaisar, 2020. "Environmental Consequence of Transportation Sector for USA: The Validation of Transportation Kuznets Curve," MPRA Paper 102167, University Library of Munich, Germany, revised 30 Jul 2020.
    26. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    27. Sun, Chenghao, 2023. "How are green finance, carbon emissions, and energy resources related in Asian sub-regions?," Resources Policy, Elsevier, vol. 83(C).
    28. Yongbum Kwon & Hyeji Lee & Heekwan Lee, 2018. "Implication of the cluster analysis using greenhouse gas emissions of Asian countries to climate change mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1225-1249, December.
    29. Heng Li & Wei Wang, 2022. "The Road to Low Carbon: Can the Opening of High-Speed Railway Reduce the Level of Urban Carbon Emissions?," Sustainability, MDPI, vol. 15(1), pages 1-16, December.
    30. Taewook Huh & Yun Young Kim, 2021. "Triangular Trajectory of Sustainable Development: Panel Analysis of the OECD Countries," IJERPH, MDPI, vol. 18(5), pages 1-16, March.
    31. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    32. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    33. Lidia Andrés Delgado & Emilio Padilla Rosa, 2017. "Driving factors of GHG emissions in EU transport activity," Working Papers wpdea1702, Department of Applied Economics at Universitat Autonoma of Barcelona.
    34. Hans Jakob Walnum & Carlo Aall & Søren Løkke, 2014. "Can Rebound Effects Explain Why Sustainable Mobility Has Not Been Achieved?," Sustainability, MDPI, vol. 6(12), pages 1-28, December.
    35. Liao, Chun-Hsiung & Lu, Chin-Shan & Tseng, Po-Hsing, 2011. "Carbon dioxide emissions and inland container transport in Taiwan," Journal of Transport Geography, Elsevier, vol. 19(4), pages 722-728.
    36. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    37. Masato Abe, 2011. "Achieving a sustainable automotive sector in Asia and the Pacific: Challenges and opportunities for the reduction of vehicle CO2 emissions," Working Papers 10811, Asia-Pacific Research and Training Network on Trade (ARTNeT), an initiative of UNESCAP and IDRC, Canada..
    38. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    39. Rebeca Fontanilla Andong & Edsel Sajor, 2017. "Urban sprawl, public transport, and increasing CO2 emissions: the case of Metro Manila, Philippines," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 99-123, February.
    40. Yuzhuo Huang & Yosuke Shigetomi & Andrew Chapman & Ken’ichi Matsumoto, 2019. "Uncovering Household Carbon Footprint Drivers in an Aging, Shrinking Society," Energies, MDPI, vol. 12(19), pages 1-18, September.
    41. Liu Yang & Yuanqing Wang & Yujun Lian & Xin Dong & Jianhong Liu & Yuanyuan Liu & Zhouhao Wu, 2023. "Rational planning strategies of urban structure, metro, and car use for reducing transport carbon dioxide emissions in developing cities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6987-7010, July.
    42. Andreoni, V. & Galmarini, S., 2012. "European CO2 emission trends: A decomposition analysis for water and aviation transport sectors," Energy, Elsevier, vol. 45(1), pages 595-602.
    43. Bilgili, Faik & Koçak, Emrah & Kuşkaya, Sevda & Bulut, Ümit, 2020. "Estimation of the co-movements between biofuel production and food prices: A wavelet-based analysis," Energy, Elsevier, vol. 213(C).
    44. GUPTA Monika & SINGH Sanjay, 2016. "Factorizing The Changes In Co2 Emissions From Indian Road Passenger Transport: A Decomposition Analysis," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 11(3), pages 67-83, December.
    45. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    46. Pui, Kiew Ling & Othman, Jamal, 2019. "The influence of economic, technical, and social aspects on energy-associated CO2 emissions in Malaysia: An extended Kaya identity approach," Energy, Elsevier, vol. 181(C), pages 468-493.
    47. Xu, Bin & Lin, Boqiang, 2015. "How industrialization and urbanization process impacts on CO2 emissions in China: Evidence from nonparametric additive regression models," Energy Economics, Elsevier, vol. 48(C), pages 188-202.
    48. Solaymani, Saeed & Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah, 2015. "The impacts of climate change policies on the transportation sector," Energy, Elsevier, vol. 81(C), pages 719-728.
    49. Pappas, Dimitrios & Chalvatzis, Konstantinos J. & Guan, Dabo & Ioannidis, Alexis, 2018. "Energy and carbon intensity: A study on the cross-country industrial shift from China to India and SE Asia," Applied Energy, Elsevier, vol. 225(C), pages 183-194.
    50. Muhammad Shafique & Anam Azam & Muhammad Rafiq & Xiaowei Luo, 2020. "Evaluating the Relationship between Freight Transport, Economic Prosperity, Urbanization, and CO 2 Emissions: Evidence from Hong Kong, Singapore, and South Korea," Sustainability, MDPI, vol. 12(24), pages 1-14, December.
    51. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Decomposition and Decoupling Analysis of Factors Affecting Carbon Emissions in China’s Regional Logistics Industry," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    52. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    53. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    54. Loan T. Le, 2016. "Biofuel Production in Vietnam: Cost-Effectiveness, Energy and GHG Balances," EEPSEA Research Report rr20160315, Economy and Environment Program for Southeast Asia (EEPSEA), revised Mar 2016.
    55. Sobrino, Natalia & Monzon, Andres, 2014. "The impact of the economic crisis and policy actions on GHG emissions from road transport in Spain," Energy Policy, Elsevier, vol. 74(C), pages 486-498.
    56. Wadud, Zia, 2015. "Decomposing the drivers of aviation fuel demand using simultaneous equation models," Energy, Elsevier, vol. 83(C), pages 551-559.
    57. Orihuela, M. Pilar & Chacartegui, Ricardo & Martínez-Fernández, Julián, 2020. "New biomorphic filters to face upcoming particulate emissions policies: A review of the FIL-BIO-DIESEL project," Energy, Elsevier, vol. 201(C).
    58. Ben Abdallah, Khaled & Belloumi, Mounir & De Wolf, Daniel, 2015. "International comparisons of energy and environmental efficiency in the road transport sector," Energy, Elsevier, vol. 93(P2), pages 2087-2101.
    59. Lilis Yuaningsih & R. Adjeng Mariana Febrianti & Munawar Javed Ahmad, 2021. "Examining the Factors Affecting CO2 Emissions from Road Transportation in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 152-159.
    60. Wang, Zhenguo & Su, Bin & Xie, Rui & Long, Haiyu, 2020. "China’s aggregate embodied CO2 emission intensity from 2007 to 2012: A multi-region multiplicative structural decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    61. Keyju Lee & Junjae Chae & Jinwoo Kim, 2019. "A Courier Service with Electric Bicycles in an Urban Area: The Case in Seoul," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    62. Jaewon Lim & DooHwan Won, 2019. "Impact of CARB’s Tailpipe Emission Standard Policy on CO 2 Reduction among the U.S. States," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
    63. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    64. Hooman Farzaneh & Jose A. Puppim de Oliveira & Benjamin McLellan & Hideaki Ohgaki, 2019. "Towards a Low Emission Transport System: Evaluating the Public Health and Environmental Benefits," Energies, MDPI, vol. 12(19), pages 1-17, September.
    65. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    66. Siti Indati Mustapa & Hussain Ali Bekhet, 2015. "Investigating Factors Affecting CO2 Emissions in Malaysian Road Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1073-1083.
    67. Wang, Qiang & Jiang, Xue-ting & Li, Rongrong, 2017. "Comparative decoupling analysis of energy-related carbon emission from electric output of electricity sector in Shandong Province, China," Energy, Elsevier, vol. 127(C), pages 78-88.
    68. Fernando Ramos-Quintana & Héctor Sotelo-Nava & Hugo Saldarriaga-Noreña & Efraín Tovar-Sánchez, 2019. "Assessing the Environmental Quality Resulting from Damages to Human-Nature Interactions Caused by Population Increase: A Systems Thinking Approach," Sustainability, MDPI, vol. 11(7), pages 1-29, April.
    69. Hyungwoo Lim & Jaehyeok Kim & Ha-Hyun Jo, 2020. "Population Age Structure and Greenhouse Gas Emissions from Road Transportation: A Panel Cointegration Analysis of 21 OECD Countries," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    70. Qingqin Wang & Xiaofeng Sun & Ruonan Wang & Lining Zhou & Haizhu Zhou & Yanqiang Di & Yanyi Li & Qi Zhang, 2023. "Research on Urban Energy Sustainable Plan under the Background of Low-Carbon Development," Sustainability, MDPI, vol. 15(19), pages 1-19, September.
    71. Wenyue Yang & Shaojian Wang & Xiaoming Zhao, 2018. "Measuring the Direct and Indirect Effects of Neighborhood-Built Environments on Travel-related CO 2 Emissions: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    72. Li, Peilin & Zhao, Pengjun & Brand, Christian, 2018. "Future energy use and CO2 emissions of urban passenger transport in China: A travel behavior and urban form based approach," Applied Energy, Elsevier, vol. 211(C), pages 820-842.
    73. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    74. Junfeng Zhang & Jianxu Liu & Jing Li & Yuyan Gao & Chuansong Zhao, 2021. "Green Development Efficiency and Its Influencing Factors in China’s Iron and Steel Industry," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    75. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    76. Jing Li & Kevin Lo & Meng Guo, 2018. "Do Socio-Economic Characteristics Affect Travel Behavior? A Comparative Study of Low-Carbon and Non-Low-Carbon Shopping Travel in Shenyang City, China," IJERPH, MDPI, vol. 15(7), pages 1-11, June.
    77. Guoyin Xu & Tong Zhao & Rong Wang, 2022. "Research on Carbon Emission Efficiency Measurement and Regional Difference Evaluation of China’s Regional Transportation Industry," Energies, MDPI, vol. 15(18), pages 1-19, September.
    78. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    79. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    80. Mohmand, Yasir Tariq & Mehmood, Fahad & Mughal, Khurrum Shahzad & Aslam, Faheem, 2021. "Investigating the causal relationship between transport infrastructure, economic growth and transport emissions in Pakistan," Research in Transportation Economics, Elsevier, vol. 88(C).
    81. Saima Abdul Jabbar & Laila Tul Qadar & Sulaman Ghafoor & Lubna Rasheed & Zouina Sarfraz & Azza Sarfraz & Muzna Sarfraz & Miguel Felix & Ivan Cherrez-Ojeda, 2022. "Air Quality, Pollution and Sustainability Trends in South Asia: A Population-Based Study," IJERPH, MDPI, vol. 19(12), pages 1-16, June.
    82. Zhao, Congyu & Wang, Kun & Dong, Xiucheng & Dong, Kangyin, 2022. "Is smart transportation associated with reduced carbon emissions? The case of China," Energy Economics, Elsevier, vol. 105(C).
    83. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    84. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
    85. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    86. Isik, Mine & Sarica, Kemal & Ari, Izzet, 2020. "Driving forces of Turkey's transportation sector CO2 emissions: An LMDI approach," Transport Policy, Elsevier, vol. 97(C), pages 210-219.
    87. Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
    88. Wang, Bo & Sun, Yefei & Chen, Qingxiang & Wang, Zhaohua, 2018. "Determinants analysis of carbon dioxide emissions in passenger and freight transportation sectors in China," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 127-132.
    89. Lee, Zhi Hua & Sethupathi, Sumathi & Lee, Keat Teong & Bhatia, Subhash & Mohamed, Abdul Rahman, 2013. "An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 71-81.
    90. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    91. Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    92. Sun, Ya-Fang & Zhang, Yue-Jun & Su, Bin, 2022. "How does global transport sector improve the emissions reduction performance? A demand-side analysis," Applied Energy, Elsevier, vol. 311(C).
    93. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2019. "Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    94. Hanafizadeh, Payam & Navardi, Zeinab & Bamdad Soofi, Jahanyar, 2010. "An attitude study on the environmental effects of rationing petrol in Tehran," Energy Policy, Elsevier, vol. 38(11), pages 6830-6848, November.
    95. Xu, Jin-Hua & Guo, Jian-Feng & Peng, Binbin & Nie, Hongguang & Kemp, Rene, 2020. "Energy growth sources and future energy-saving potentials in passenger transportation sector in China," Energy, Elsevier, vol. 206(C).
    96. Chandran, V.G.R. & Tang, Chor Foon, 2013. "The impacts of transport energy consumption, foreign direct investment and income on CO2 emissions in ASEAN-5 economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 445-453.
    97. Liu, Xianmei & Peng, Rui & Zhong, Chao & Wang, Mingyue & Guo, Pibin, 2021. "What drives the temporal and spatial differences of CO2 emissions in the transport sector? Empirical evidence from municipalities in China," Energy Policy, Elsevier, vol. 159(C).
    98. Zhao, Jiaxin & Mattauch, Linus, 2022. "When standards have better distributional consequences than carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    99. Fei Ma & Wenlin Wang & Qipeng Sun & Fei Liu & Xiaodan Li, 2018. "Ecological Pressure of Carbon Footprint in Passenger Transport: Spatio-Temporal Changes and Regional Disparities," Sustainability, MDPI, vol. 10(2), pages 1-17, January.
    100. Shafique, Muhammad & Azam, Anam & Rafiq, Muhammad & Luo, Xiaowei, 2022. "Life cycle assessment of electric vehicles and internal combustion engine vehicles: A case study of Hong Kong," Research in Transportation Economics, Elsevier, vol. 91(C).
    101. Jiefang Dong & Chun Deng & Rongrong Li & Jieyu Huang, 2016. "Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models," Sustainability, MDPI, vol. 9(1), pages 1-15, December.
    102. Raza, Syed Ali & Shah, Nida & Sharif, Arshian, 2019. "Time frequency relationship between energy consumption, economic growth and environmental degradation in the United States: Evidence from transportation sector," Energy, Elsevier, vol. 173(C), pages 706-720.
    103. Muhammad Azmi & Akihiro Tokai, 2016. "System dynamic modeling of CO2 emissions and pollutants from passenger cars in Malaysia, 2040," Environment Systems and Decisions, Springer, vol. 36(4), pages 335-350, December.
    104. Ming Meng & Manyu Li, 2020. "Decomposition Analysis and Trend Prediction of CO 2 Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    105. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    106. Dan He & Jialiang Yang & Zhengming Wang & Wenchao Li, 2020. "Has the manufacturing policy helped to promote the logistics industry?," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    107. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    108. Zhao Liu & Ling Li & Yue-Jun Zhang, 2015. "Investigating the CO 2 emission differences among China’s transport sectors and their influencing factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 1323-1343, June.
    109. Nihit Goyal, 2021. "Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India," Sustainability, MDPI, vol. 13(23), pages 1-23, December.
    110. Tao Wang & Kai Zhang & Keliang Liu & Keke Ding & Wenwen Qin, 2023. "Spatial Heterogeneity and Scale Effects of Transportation Carbon Emission-Influencing Factors—An Empirical Analysis Based on 286 Cities in China," IJERPH, MDPI, vol. 20(3), pages 1-17, January.
    111. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.
    112. Changzheng Zhu & Meng Wang & Yarong Yang, 2020. "Analysis of the Influencing Factors of Regional Carbon Emissions in the Chinese Transportation Industry," Energies, MDPI, vol. 13(5), pages 1-20, March.
    113. Xue-Ting Jiang & Jie-Fang Dong & Xing-Min Wang & Rong-Rong Li, 2016. "The Multilevel Index Decomposition of Energy-Related Carbon Emission and Its Decoupling with Economic Growth in USA," Sustainability, MDPI, vol. 8(9), pages 1-16, August.
    114. Liu, Hongtao & Polenske, Karen R. & Xi, Youmin & Guo, Ju'e, 2010. "Comprehensive evaluation of effects of straw-based electricity generation: A Chinese case," Energy Policy, Elsevier, vol. 38(10), pages 6153-6160, October.
    115. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2012. "Necessity of biodiesel utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5732-5740.
    116. Chang, Chun-Ping & Dong, Minyi & Sui, Bo & Chu, Yin, 2019. "Driving forces of global carbon emissions: From time- and spatial-dynamic perspectives," Economic Modelling, Elsevier, vol. 77(C), pages 70-80.
    117. Zhang, Chuanguo & Nian, Jiang, 2013. "Panel estimation for transport sector CO2 emissions and its affecting factors: A regional analysis in China," Energy Policy, Elsevier, vol. 63(C), pages 918-926.
    118. Huali Sun & Mengzhen Li & Yaofeng Xue, 2019. "Examining the Factors Influencing Transport Sector CO 2 Emissions and Their Efficiency in Central China," Sustainability, MDPI, vol. 11(17), pages 1-15, August.
    119. Luo, Xiao & Dong, Liang & Dou, Yi & Li, Yan & Liu, Kai & Ren, Jingzheng & Liang, Hanwei & Mai, Xianmin, 2017. "Factor decomposition analysis and causal mechanism investigation on urban transport CO2 emissions: Comparative study on Shanghai and Tokyo," Energy Policy, Elsevier, vol. 107(C), pages 658-668.
    120. Khatiwada, Dilip & Silveira, Semida, 2017. "Scenarios for bioethanol production in Indonesia: How can we meet mandatory blending targets?," Energy, Elsevier, vol. 119(C), pages 351-361.
    121. Eom, Jiyong & Schipper, Lee & Thompson, Lou, 2012. "We keep on truckin': Trends in freight energy use and carbon emissions in 11 IEA countries," Energy Policy, Elsevier, vol. 45(C), pages 327-341.

  49. Timilsina, Govinda R., 2008. "Atmospheric stabilization of CO2 emissions: Near-term reductions and absolute versus intensity-based targets," Energy Policy, Elsevier, vol. 36(6), pages 1927-1936, June.

    Cited by:

    1. Edvardsson Björnberg, Karin, 2013. "Rational climate mitigation goals," Energy Policy, Elsevier, vol. 56(C), pages 285-292.
    2. Timilsina, Govinda R., 2012. "Economic implications of moving toward global convergence on emission intensities," Policy Research Working Paper Series 6115, The World Bank.

  50. Shrestha, Ram M. & Timilsina, Govinda R., 2002. "The additionality criterion for identifying clean development mechanism projects under the Kyoto Protocol," Energy Policy, Elsevier, vol. 30(1), pages 73-79, January.

    Cited by:

    1. Purohit, Pallav & Michaelowa, Axel, 2007. "CDM potential of wind power projects in India," HWWI Research Papers 1-8, Hamburg Institute of International Economics (HWWI).
    2. Theresa Stahlke, 2020. "The impact of the Clean Development Mechanism on developing countries’ commitment to mitigate climate change and its implications for the future," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 107-125, January.
    3. Müller-Pelzer, Felicia, 2004. "The Clean Development Mechanism," HWWA Reports 244, Hamburg Institute of International Economics (HWWA).
    4. Sell, Joachim & Koellner, Thomas & Weber, Olaf & Pedroni, Lucio & Scholz, Roland W., 2006. "Decision criteria of European and Latin American market actors for tropical forestry projects providing environmental services," Ecological Economics, Elsevier, vol. 58(1), pages 17-36, June.
    5. Zhang, Chi & Heller, Thomas C. & May, Michael M., 2005. "Carbon intensity of electricity generation and CDM baseline: case studies of three Chinese provinces," Energy Policy, Elsevier, vol. 33(4), pages 451-465, March.
    6. Diakoulaki, D. & Georgiou, P. & Tourkolias, C. & Georgopoulou, E. & Lalas, D. & Mirasgedis, S. & Sarafidis, Y., 2007. "A multicriteria approach to identify investment opportunities for the exploitation of the clean development mechanism," Energy Policy, Elsevier, vol. 35(2), pages 1088-1099, February.
    7. Sierra, Rodrigo & Russman, Eric, 2006. "On the efficiency of environmental service payments: A forest conservation assessment in the Osa Peninsula, Costa Rica," Ecological Economics, Elsevier, vol. 59(1), pages 131-141, August.
    8. Timothy Cadman & Lauren Eastwood & Federico Lopez-Casero Michaelis & Tek N. Maraseni & Jamie Pittock & Tapan Sarker, 2015. "The Political Economy of Sustainable Development," Books, Edward Elgar Publishing, number 15773.
    9. Ina, Porras & Bruce, Alyward & Jeff, Dengel, 2013. "Monitoring payments for watershed services schemes in developing countries," MPRA Paper 47185, University Library of Munich, Germany.
    10. Axel Michaelowa & John O’brien, 2006. "Domestic UNFCCC Kyoto Protocol Mechanisms Project Supply Coordination Through Tendering – Lessons from the New Zealand Experience," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 711-722, May.
    11. Zhang, Chi & Shukla, P.R. & Victor, David G. & Heller, Thomas C. & Biswas, Debashish & Nag, Tirthankar, 2006. "Baselines for carbon emissions in the Indian and Chinese power sectors: Implications for international carbon trading," Energy Policy, Elsevier, vol. 34(14), pages 1900-1917, September.
    12. Selvaretnam, Geethanjali & Thampanishvong, Kannika, 2010. "Future of the Clean Development Mechanism in Tackling Climate Change," SIRE Discussion Papers 2010-35, Scottish Institute for Research in Economics (SIRE).
    13. Matteo Deleidi & Mariana Mazzucato & Gregor Semieniuk, 2019. "Neither crowding in nor out: Public direct investment mobilising private investment into renewable electricity projects," Working Papers 226, Department of Economics, SOAS University of London, UK.
    14. Karakosta, Charikleia & Pappas, Charalampos & Marinakis, Vangelis & Psarras, John, 2013. "Renewable energy and nuclear power towards sustainable development: Characteristics and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 187-197.
    15. Lenzen, Manfred & Murray, Joy, 2010. "Conceptualising environmental responsibility," Ecological Economics, Elsevier, vol. 70(2), pages 261-270, December.
    16. Iván Pérez-Rubio & Daniel Flores & Christian Vargas & Francisco Jiménez & Iker Etxano, 2021. "To What Extent Are Cattle Ranching Landholders Willing to Restore Ecosystem Services? Constructing a Micro-Scale PES Scheme in Southern Costa Rica," Land, MDPI, vol. 10(7), pages 1-24, July.
    17. Purohit, Pallav, 2008. "Small hydro power projects under clean development mechanism in India: A preliminary assessment," Energy Policy, Elsevier, vol. 36(6), pages 2000-2015, June.
    18. Adam G. Bumpus & Diana M. Liverman, 2008. "Accumulation by Decarbonization and the Governance of Carbon Offsets," Economic Geography, Clark University, vol. 84(2), pages 127-155, April.
    19. Muller-Pelzer, Felicia, 2004. "The Clean Development Mechanism," Report Series 26122, Hamburg Institute of International Economics.
    20. Shunli Wang & Henri L.F. de Groot & Peter Nijkamp & Erik T. Verhoef, 2009. "Global and Regional Impacts of the Clean Development Mechanism," Tinbergen Institute Discussion Papers 09-045/3, Tinbergen Institute.
    21. Barnes, Belinda & Southwell, Darren & Bruce, Sarah & Woodhams, Felicity, 2014. "Additionality, common practice and incentive schemes for the uptake of innovations," Technological Forecasting and Social Change, Elsevier, vol. 89(C), pages 43-61.
    22. Sathaye, Jayant & Murtishaw, Scott & Price, Lynn & Lefranc, Maurice & Roy, Joyashree & Winkler, Harald & Spalding-Fecher, Randall, 2004. "Multiproject baselines for evaluation of electric power projects," Energy Policy, Elsevier, vol. 32(11), pages 1303-1317, July.
    23. Randall Spalding-Fecher & Steve Thorne & Njeri Wamukonya, 2002. "Reside0ntial solar water heating as a potential Clean Development Mechanism project: A South African case study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(2), pages 135-153, June.

  51. Govinda Timilsina & Ram Shrestha, 2002. "General equilibrium analysis of economic and environmental effects of carbon tax in a developing country: case of Thailand," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 5(3), pages 179-211, September.

    Cited by:

    1. Macdonald,Kevin Alan David & Patrinos,Harry Anthony, 2021. "Education Quality, Green Technology, and the Economic Impact of Carbon Pricing," Policy Research Working Paper Series 9808, The World Bank.
    2. Devarajan Shantayanan & Go Delfin S & Robinson Sherman & Thierfelder Karen, 2011. "Tax Policy to Reduce Carbon Emissions in a Distorted Economy: Illustrations from a South Africa CGE Model," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 11(1), pages 1-24, February.
    3. Saelim, Supawan, 2019. "Carbon tax incidence on household consumption: Heterogeneity across socio-economic factors in Thailand," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 159-174.
    4. Timilsina, Govinda R. & Pargal, Sheoli, 2020. "Economics of energy subsidy reforms in Bangladesh," Energy Policy, Elsevier, vol. 142(C).
    5. Timilsina, Govinda & Steinbuks, Jevgenijs, 2021. "Economic costs of electricity load shedding in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Weijiang Liu & Yangyang Li & Tingting Liu & Min Liu & Hai Wei, 2021. "How to Promote Low-Carbon Economic Development? A Comprehensive Assessment of Carbon Tax Policy in China," IJERPH, MDPI, vol. 18(20), pages 1-16, October.
    7. Dogan, Berna & Tekgüç, Hasan & Yeldan, A. Erinç, 2022. "Towards A Green Income Support Policy: Investigating Social and Fiscal Alternatives for Turkey," Conference papers 333496, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    8. Timilsina, Govinda R., 2007. "The role of revenue recycling schemes in environmental tax selection : a general equilibrium analysis," Policy Research Working Paper Series 4388, The World Bank.
    9. Paula Pereda & Andrea Lucchesi, Carolina Policarpo Garcia, Bruno Toni Palialol, 2019. "Neutral carbon tax and environmental targets in Brazil," Working Papers, Department of Economics 2019_02, University of São Paulo (FEA-USP).
    10. Timilsina, Govinda & Steinbuks, Jevgenijs & Sapkota, Prakash, 2019. "Economy-wide Cost of Electricity Load Shedding in Nepal," Conference papers 333038, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Devarajan, Shantayanan & Go, Delfin S. & Robinson, Sherman & Thierfelder, Karen, 2009. "Tax policy to reduce carbon emissions in south Africa," Policy Research Working Paper Series 4933, The World Bank.
    12. Shrestha, Ram M. & Pradhan, Shreekar, 2010. "Co-benefits of CO2 emission reduction in a developing country," Energy Policy, Elsevier, vol. 38(5), pages 2586-2597, May.

  52. Shrestha, Ram M. & Timilsina, Govinda R., 1998. "A divisia decomposition analysis of NOx emission intensities for the power sector in Thailand and South Korea," Energy, Elsevier, vol. 23(6), pages 433-438.

    Cited by:

    1. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    2. Nag, Barnali & Parikh, Jyoti, 2000. "Indicators of carbon emission intensity from commercial energy use in India," Energy Economics, Elsevier, vol. 22(4), pages 441-461, August.
    3. Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
    4. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    5. Bhattacharyya, Subhes C. & Ussanarassamee, Arjaree, 2004. "Decomposition of energy and CO2 intensities of Thai industry between 1981 and 2000," Energy Economics, Elsevier, vol. 26(5), pages 765-781, September.
    6. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    7. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.

  53. Shrestha, Ram M. & Timilsina, Govinda R., 1997. "SO2 emission intensities of the power sector in Asia: Effects of generation-mix and fuel-intensity changes," Energy Economics, Elsevier, vol. 19(3), pages 355-362, July.

    Cited by:

    1. He, Jie, 2010. "What is the role of openness for China's aggregate industrial SO2 emission?: A structural analysis based on the Divisia decomposition method," Ecological Economics, Elsevier, vol. 69(4), pages 868-886, February.
    2. Qian, Yuan & Scherer, Laura & Tukker, Arnold & Behrens, Paul, 2020. "China's potential SO2 emissions from coal by 2050," Energy Policy, Elsevier, vol. 147(C).
    3. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    4. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    5. Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
    6. Nag, Barnali & Parikh, Jyoti, 2000. "Indicators of carbon emission intensity from commercial energy use in India," Energy Economics, Elsevier, vol. 22(4), pages 441-461, August.
    7. Majumdar, Devleena & Kar, Saibal, 2017. "Does technology diffusion help to reduce emission intensity? Evidence from organized manufacturing and agriculture in India," Resource and Energy Economics, Elsevier, vol. 48(C), pages 30-41.
    8. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    9. Richard Perkins & Eric Neumayer, 2008. "Fostering Environment Efficiency through Transnational Linkages? Trajectories of CO2 and SO2, 1980–2000," Environment and Planning A, , vol. 40(12), pages 2970-2989, December.
    10. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.

  54. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.

    Cited by:

    1. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    2. Jieting Yin & Chaowei Huang, 2022. "Analysis on Influencing Factors Decomposition and Decoupling Effect of Power Carbon Emissions in Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    3. Santosh Kumar Sahu and Sumedha Kamboj, 2019. "Decomposition Analysis of GHG Emissions In Emerging Economies," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(3), pages 59-77, September.
    4. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    5. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    6. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    7. Nag, Barnali & Parikh, Jyoti K., 2005. "Carbon emission coefficient of power consumption in India: baseline determination from the demand side," Energy Policy, Elsevier, vol. 33(6), pages 777-786, April.
    8. Wang, Shaojian & Wang, Jieyu & Fang, Chuanglin & Feng, Kuishuang, 2019. "Inequalities in carbon intensity in China: A multi-scalar and multi-mechanism analysis," Applied Energy, Elsevier, vol. 254(C).
    9. Gui, Shusen & Wu, Chunyou & Qu, Ying & Guo, Lingling, 2017. "Path analysis of factors impacting China's CO2 emission intensity: Viewpoint on energy," Energy Policy, Elsevier, vol. 109(C), pages 650-658.
    10. Sandrine Mathy & Philippe Menanteau & Patrick Criqui, 2018. "After the Paris Agreement: measuring the global decarbonization wedges from national energy scenarios," Post-Print hal-01793378, HAL.
    11. Wang, Xiaolei & Lin, Boqiang, 2016. "How to reduce CO2 emissions in China׳s iron and steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1496-1505.
    12. Ren, Shenggang & Fu, Xiang & Chen, XiaoHong, 2012. "Regional variation of energy-related industrial CO2 emissions mitigation in China," China Economic Review, Elsevier, vol. 23(4), pages 1134-1145.
    13. Shrestha, Ram M. & Anandarajah, Gabrial & Liyanage, Migara H., 2009. "Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific," Energy Policy, Elsevier, vol. 37(6), pages 2375-2384, June.
    14. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    15. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    16. Nag, Barnali & Parikh, Jyoti, 2000. "Indicators of carbon emission intensity from commercial energy use in India," Energy Economics, Elsevier, vol. 22(4), pages 441-461, August.
    17. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    18. Huayong Niu & Zhishuo Zhang & Yao Xiao & Manting Luo & Yumeng Chen, 2022. "A Study of Carbon Emission Efficiency in Chinese Provinces Based on a Three-Stage SBM-Undesirable Model and an LSTM Model," IJERPH, MDPI, vol. 19(9), pages 1-19, April.
    19. Choi, Ki-Hong & Ang, B.W., 2002. "Measuring thermal efficiency improvement in power generation," Energy, Elsevier, vol. 27(5), pages 447-455.
    20. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    21. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    22. Lin, Boqiang & Long, Houyin, 2016. "Emissions reduction in China׳s chemical industry – Based on LMDI," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1348-1355.
    23. Shrestha, Ram M. & Timilsina, Govinda R., 1997. "SO2 emission intensities of the power sector in Asia: Effects of generation-mix and fuel-intensity changes," Energy Economics, Elsevier, vol. 19(3), pages 355-362, July.
    24. Ma, Jia-Jun & Du, Gang & Xie, Bai-Chen, 2019. "CO2 emission changes of China's power generation system: Input-output subsystem analysis," Energy Policy, Elsevier, vol. 124(C), pages 1-12.
    25. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    26. Xue-Ting Jiang & Min Su & Rongrong Li, 2018. "Decomposition Analysis in Electricity Sector Output from Carbon Emissions in China," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    27. Yunfei An & Dequn Zhou & Qunwei Wang, 2022. "Carbon emission reduction potential and its influencing factors in China’s coal-fired power industry: a cost optimization and decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3619-3639, March.
    28. Xiao Zhang & Meng Li & Qiao Li & Yanan Wang & Wei Chen, 2021. "Spatial Threshold Effect of Industrial Land Use Efficiency on Industrial Carbon Emissions: A Case Study in China," IJERPH, MDPI, vol. 18(17), pages 1-17, September.
    29. Karmellos, M. & Kopidou, D. & Diakoulaki, D., 2016. "A decomposition analysis of the driving factors of CO2 (Carbon dioxide) emissions from the power sector in the European Union countries," Energy, Elsevier, vol. 94(C), pages 680-692.
    30. Liu, Nan & Ma, Zujun & Kang, Jidong, 2017. "A regional analysis of carbon intensities of electricity generation in China," Energy Economics, Elsevier, vol. 67(C), pages 268-277.
    31. Tan, Xianchun & Dong, Lele & Chen, Dexue & Gu, Baihe & Zeng, Yuan, 2016. "China’s regional CO2 emissions reduction potential: A study of Chongqing city," Applied Energy, Elsevier, vol. 162(C), pages 1345-1354.
    32. Wang, Jianda & Dong, Kangyin & Hochman, Gal & Timilsina, Govinda R., 2023. "Factors driving aggregate service sector energy intensities in Asia and Eastern Europe: A LMDI analysis," Energy Policy, Elsevier, vol. 172(C).
    33. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    34. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    35. Steenhof, Paul A. & Weber, Chris J., 2011. "An assessment of factors impacting Canada's electricity sector's GHG emissions," Energy Policy, Elsevier, vol. 39(7), pages 4089-4096, July.
    36. Achour, Houda & Belloumi, Mounir, 2016. "Decomposing the influencing factors of energy consumption in Tunisian transportation sector using the LMDI method," Transport Policy, Elsevier, vol. 52(C), pages 64-71.
    37. Ang, B. W. & Choi, Ki-Hong, 2002. "Boundary problem in carbon emission decomposition," Energy Policy, Elsevier, vol. 30(13), pages 1201-1205, October.
    38. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
    39. Ang, B.W. & Goh, Tian, 2016. "Carbon intensity of electricity in ASEAN: Drivers, performance and outlook," Energy Policy, Elsevier, vol. 98(C), pages 170-179.
    40. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    41. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.
    42. Zhaosu Meng & Huan Wang & Baona Wang, 2018. "Empirical Analysis of Carbon Emission Accounting and Influencing Factors of Energy Consumption in China," IJERPH, MDPI, vol. 15(11), pages 1-15, November.
    43. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.

Chapters

  1. Govinda R. Timilsina, 2014. "Economic Impacts of Biofuels," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 65-77, Springer.

    Cited by:

    1. Kuhn, Arnim & Endeshaw, Kassahun, 2015. "Trends and Drivers of Crop Biomass Demand: Sub-Saharan Africa vs the Rest of the World," Discussion Papers 212930, University of Bonn, Institute for Food and Resource Economics.
    2. Johanna Choumert & Pascale Combes Motel & Charlain Guegang, 2017. "The Biofuel-Development Nexus: A Meta-Analysis," Working Papers 2017.04, FAERE - French Association of Environmental and Resource Economists.

  2. Caesar B. Cororaton & Govinda R. Timilsina, 2014. "Biofuels and Poverty," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 79-89, Springer.

    Cited by:

    1. Kate Dooley & Sivan Kartha, 2018. "Land-based negative emissions: risks for climate mitigation and impacts on sustainable development," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 79-98, February.
    2. Piotr Gradziuk & Krzysztof Jończyk & Barbara Gradziuk & Adrianna Wojciechowska & Anna Trocewicz & Marcin Wysokiński, 2021. "An Economic Assessment of the Impact on Agriculture of the Proposed Changes in EU Biofuel Policy Mechanisms," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    4. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    6. Carlos Omar Trejo-Pech & James A. Larson & Burton C. English & T. Edward Yu, 2019. "Cost and Profitability Analysis of a Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA," Energies, MDPI, vol. 12(16), pages 1-18, August.
    7. Murnaghan, Kitty, 2017. "A comprehensive evaluation of the EU's biofuel policy: From biofuels to agrofuels," IPE Working Papers 81/2017, Berlin School of Economics and Law, Institute for International Political Economy (IPE).
    8. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    9. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    10. Ladislav Kristoufek & Karel Janda & David Zilberman, 2015. "Co-movements of Ethanol Related Prices: Evidence from Brazil and the USA," CAMA Working Papers 2015-11, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

  3. Govinda R. Timilsina & Ashish Shrestha, 2014. "An Overview of Global Markets and Policies," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 1-14, Springer.

    Cited by:

    1. Piotr Gradziuk & Krzysztof Jończyk & Barbara Gradziuk & Adrianna Wojciechowska & Anna Trocewicz & Marcin Wysokiński, 2021. "An Economic Assessment of the Impact on Agriculture of the Proposed Changes in EU Biofuel Policy Mechanisms," Energies, MDPI, vol. 14(21), pages 1-21, October.
    2. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.

  4. Jevgenijs Steinbuks & Govinda R. Timilsina, 2014. "Land-Use Change and Food Supply," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 91-102, Springer.

    Cited by:

    1. Kuhn, Arnim & Endeshaw, Kassahun, 2015. "Trends and Drivers of Crop Biomass Demand: Sub-Saharan Africa vs the Rest of the World," Discussion Papers 212930, University of Bonn, Institute for Food and Resource Economics.

  5. Miguel A. Carriquiry & Xiaodong Du & Govinda R. Timilsina, 2014. "Production Costs of Biofuels," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 33-46, Springer.

    Cited by:

    1. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    2. Carlos Omar Trejo-Pech & James A. Larson & Burton C. English & T. Edward Yu, 2019. "Cost and Profitability Analysis of a Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA," Energies, MDPI, vol. 12(16), pages 1-18, August.
    3. Schmidt, Tobias & Buchert, Matthias & Schebek, Liselotte, 2016. "Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 107-122.

  6. Govinda R. Timilsina, 2014. "Oil Price and Biofuels," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 103-110, Springer.

    Cited by:

    1. Jamel Trabelsi & Mohamed Mehdi Jelassi & Gaye Del Lo, 2017. "A Volatility Analysis of Agricultural Commodity and Crude Oil Global Markets," Applied Economics and Finance, Redfame publishing, vol. 4(2), pages 129-140, March.

  7. Gal Hochman & Deepak Rajagopal & Govinda R. Timilsina & David Zilberman, 2014. "Impacts of Biofuels on Food Prices," Natural Resource Management and Policy, in: Govinda R. Timilsina & David Zilberman (ed.), The Impacts of Biofuels on the Economy, Environment, and Poverty, edition 127, chapter 0, pages 47-64, Springer.

    Cited by:

    1. Kate Dooley & Sivan Kartha, 2018. "Land-based negative emissions: risks for climate mitigation and impacts on sustainable development," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 79-98, February.
    2. Murnaghan, Kitty, 2017. "A comprehensive evaluation of the EU's biofuel policy: From biofuels to agrofuels," IPE Working Papers 81/2017, Berlin School of Economics and Law, Institute for International Political Economy (IPE).

Books

  1. Govinda R. Timilsina & David Zilberman (ed.), 2014. "The Impacts of Biofuels on the Economy, Environment, and Poverty," Natural Resource Management and Policy, Springer, edition 127, number 978-1-4939-0518-8, December.

    Cited by:

    1. Kate Dooley & Sivan Kartha, 2018. "Land-based negative emissions: risks for climate mitigation and impacts on sustainable development," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 79-98, February.
    2. Piotr Gradziuk & Krzysztof Jończyk & Barbara Gradziuk & Adrianna Wojciechowska & Anna Trocewicz & Marcin Wysokiński, 2021. "An Economic Assessment of the Impact on Agriculture of the Proposed Changes in EU Biofuel Policy Mechanisms," Energies, MDPI, vol. 14(21), pages 1-21, October.
    3. Correa, Diego F. & Beyer, Hawthorne L. & Fargione, Joseph E. & Hill, Jason D. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2019. "Towards the implementation of sustainable biofuel production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 250-263.
    4. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    5. Piotr Gradziuk & Barbara Gradziuk & Anna Trocewicz & Błażej Jendrzejewski, 2020. "Potential of Straw for Energy Purposes in Poland—Forecasts Based on Trend and Causal Models," Energies, MDPI, vol. 13(19), pages 1-22, September.
    6. Carlos Omar Trejo-Pech & James A. Larson & Burton C. English & T. Edward Yu, 2019. "Cost and Profitability Analysis of a Prospective Pennycress to Sustainable Aviation Fuel Supply Chain in Southern USA," Energies, MDPI, vol. 12(16), pages 1-18, August.
    7. Murnaghan, Kitty, 2017. "A comprehensive evaluation of the EU's biofuel policy: From biofuels to agrofuels," IPE Working Papers 81/2017, Berlin School of Economics and Law, Institute for International Political Economy (IPE).
    8. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    9. Ladislav Kristoufek & Karel Janda & David Zilberman, 2015. "Co-movements of Ethanol Related Prices: Evidence from Brazil and the USA," CAMA Working Papers 2015-11, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Huong Nguyen & Marcus Randall & Andrew Lewis, 2024. "Factors Affecting Crop Prices in the Context of Climate Change—A Review," Agriculture, MDPI, vol. 14(1), pages 1-17, January.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.