IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i8p4588-d791939.html
   My bibliography  Save this article

Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods

Author

Listed:
  • Xiaodong Li

    (School of Economics and Management, Anhui Polytechnic University, Wuhu 241000, China)

  • Ai Ren

    (School of Business, State University of New York at New Paltz, New Paltz, NY 12561, USA)

  • Qi Li

    (School of Business, State University of New York at New Paltz, New Paltz, NY 12561, USA)

Abstract

While the transportation sector is one of largest economic growth drivers for many countries, the adverse impacts of transportation on air quality are also well-noted, especially in developing countries. Carbon dioxide (CO 2 ) emissions are one of the direct results of a transportation sector powered by burning fossil-based fuels. Detailed knowledge of CO 2 emissions produced by the transportation sectors in various countries is essential for these countries to revise their future energy investments and policies. In this framework, three machine learning algorithms, ordinary least squares regression (OLS), support vector machine (SVM), and gradient boosting regression (GBR), are used to forecast transportation-based CO 2 emissions. Both socioeconomic factors and transportation factors are also included as features in the study. We study the top 30 CO 2 emissions-producing countries, including the Tier 1 group (the top five countries, accounting for 61% of global CO 2 emissions production) and the Tier 2 group (the next 25 countries, accounting for 35% of total CO 2 emissions production). We evaluate our model using four-fold cross-validation and report four frequently used statistical metrics ( R 2 , MAE, rRMSE, and MAPE). Of the three machine learning algorithms, the GBR model with features combining socioeconomic and transportation factors (GBR_ALL) has the best performance, with an R 2 value of 0.9943, rRMSE of 0.1165, and MAPE of 0.1408. We also find that both transportation features and socioeconomic features are important for transportation-based CO 2 emission prediction. Transportation features are more important in modeling for 30 countries, while socioeconomic features (especially GDP and population) are more important when modeling for Tier 1 and Tier 2 countries.

Suggested Citation

  • Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4588-:d:791939
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/8/4588/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/8/4588/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sajid, M. Jawad & Cao, Qingren & Kang, Wei, 2019. "Transport sector carbon linkages of EU's top seven emitters," Transport Policy, Elsevier, vol. 80(C), pages 24-38.
    2. Miquel-Ángel Garcia-López & Ilias Pasidis & Elisabet Viladecans-Marsal, 2015. "Express delivery to the suburbs. The effects of transportation in Europe’s heterogeneous cities," Working Papers 2015/30, Institut d'Economia de Barcelona (IEB).
    3. Yongke Yuan & Yixing Wang & Yuanying Chi & Feng Jin, 2020. "Identification of Key Carbon Emission Sectors and Analysis of Emission Effects in China," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    4. Yi Liang & Dongxiao Niu & Haichao Wang & Yan Li, 2017. "Factors Affecting Transportation Sector CO 2 Emissions Growth in China: An LMDI Decomposition Analysis," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
    5. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    6. Huibin Zeng & Bilin Shao & Genqing Bian & Hongbin Dai & Fangyu Zhou, 2022. "Analysis of Influencing Factors and Trend Forecast of CO 2 Emission in Chengdu-Chongqing Urban Agglomeration," Sustainability, MDPI, vol. 14(3), pages 1-30, January.
    7. Mohammad Reza Lotfalipour & Mohammad Ali Falahi & Morteza Bastam, 2013. "Prediction of CO2 Emissions in Iran using Grey and ARIMA Models," International Journal of Energy Economics and Policy, Econjournals, vol. 3(3), pages 229-237.
    8. Pradhan, Rudra P. & Bagchi, Tapan P., 2013. "Effect of transportation infrastructure on economic growth in India: The VECM approach," Research in Transportation Economics, Elsevier, vol. 38(1), pages 139-148.
    9. Liddle, Brantley & Lung, Sidney, 2013. "The long-run causal relationship between transport energy consumption and GDP: Evidence from heterogeneous panel methods robust to cross-sectional dependence," Economics Letters, Elsevier, vol. 121(3), pages 524-527.
    10. Yeşim Kuştepeli & Yaprak Gülcan & Sedef Akgüngör, 2012. "Transportation infrastructure investment, growth and international trade in Turkey," Applied Economics, Taylor & Francis Journals, vol. 44(20), pages 2619-2629, July.
    11. Nuri Cihat Onat & Murat Kucukvar & Omer Tatari, 2014. "Towards Life Cycle Sustainability Assessment of Alternative Passenger Vehicles," Sustainability, MDPI, vol. 6(12), pages 1-38, December.
    12. Lu, I.J. & Lin, Sue J. & Lewis, Charles, 2007. "Decomposition and decoupling effects of carbon dioxide emission from highway transportation in Taiwan, Germany, Japan and South Korea," Energy Policy, Elsevier, vol. 35(6), pages 3226-3235, June.
    13. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Why have CO2 emissions increased in the transport sector in Asia ? underlying factors and policy options," Policy Research Working Paper Series 5098, The World Bank.
    14. Nur Fatma Fadilah Yaacob & Muhamad Razuhanafi Mat Yazid & Khairul Nizam Abdul Maulud & Noor Ezlin Ahmad Basri, 2020. "A Review of the Measurement Method, Analysis and Implementation Policy of Carbon Dioxide Emission from Transportation," Sustainability, MDPI, vol. 12(14), pages 1-23, July.
    15. Fady M. A Hassouna & Khaled Al-Sahili, 2020. "Environmental Impact Assessment of the Transportation Sector and Hybrid Vehicle Implications in Palestine," Sustainability, MDPI, vol. 12(19), pages 1-12, September.
    16. Timilsina, Govinda R. & Shrestha, Ashish, 2009. "Transport sector CO2 emissions growth in Asia: Underlying factors and policy options," Energy Policy, Elsevier, vol. 37(11), pages 4523-4539, November.
    17. Chan Swee Lean, 2001. "Empirical tests to discern linkages between construction and other economic sectors in Singapore," Construction Management and Economics, Taylor & Francis Journals, vol. 19(4), pages 355-363.
    18. Mohammad Hossein Rezaei & Milad Sadeghzadeh & Mohammad Alhuyi Nazari & Mohammad Hossein Ahmadi & Fatemeh Razi Astaraei, 2018. "Applying GMDH artificial neural network in modeling CO2 emissions in four nordic countries," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(3), pages 266-271.
    19. Hooi Lean, Hooi & Huang, Wei & Hong, Junjie, 2014. "Logistics and economic development: Experience from China," Transport Policy, Elsevier, vol. 32(C), pages 96-104.
    20. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    21. Cai, Jianchao & Xu, Kai & Zhu, Yanhui & Hu, Fang & Li, Liuhuan, 2020. "Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest," Applied Energy, Elsevier, vol. 262(C).
    22. Wen Song & Ai Ren & Xiaodong Li & Qi Li, 2021. "The Orchestrating Role of Carbon Subsidies in a Capital-Constrained Supply Chain," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, December.
    23. Xiaoping Zhu & Rongrong Li, 2017. "An Analysis of Decoupling and Influencing Factors of Carbon Emissions from the Transportation Sector in the Beijing-Tianjin-Hebei Area, China," Sustainability, MDPI, vol. 9(5), pages 1-19, April.
    24. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaren Aydın & Celal Cakiroglu & Gebrail Bekdaş & Ümit Işıkdağ & Sanghun Kim & Junhee Hong & Zong Woo Geem, 2023. "Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms," Sustainability, MDPI, vol. 16(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elena Cigu & Daniela Tatiana Agheorghiesei & Anca Florentina Gavriluță (Vatamanu) & Elena Toader, 2018. "Transport Infrastructure Development, Public Performance and Long-Run Economic Growth: A Case Study for the Eu-28 Countries," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    2. Mohmand, Yasir Tariq & Mehmood, Fahad & Mughal, Khurrum Shahzad & Aslam, Faheem, 2021. "Investigating the causal relationship between transport infrastructure, economic growth and transport emissions in Pakistan," Research in Transportation Economics, Elsevier, vol. 88(C).
    3. Arvin, Mak B. & Pradhan, Rudra P. & Norman, Neville R., 2015. "Transportation intensity, urbanization, economic growth, and CO2 emissions in the G-20 countries," Utilities Policy, Elsevier, vol. 35(C), pages 50-66.
    4. Manel Daldoul & Ahlem Dakhlaoui, 2018. "Using the LMDI Decomposition Approach to Analyze the Influencing Factors of Carbon Emissions in Tunisian Transportation Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 8(6), pages 22-28.
    5. Özer, Mustafa & Canbay, Şerif & Kırca, Mustafa, 2021. "The impact of container transport on economic growth in Turkey: An ARDL bounds testing approach," Research in Transportation Economics, Elsevier, vol. 88(C).
    6. Samir Saidi, 2021. "Freight transport and energy consumption: What impact on carbon dioxide emissions and environmental quality in MENA countries?," Economic Change and Restructuring, Springer, vol. 54(4), pages 1119-1145, November.
    7. Ming Meng & Manyu Li, 2020. "Decomposition Analysis and Trend Prediction of CO 2 Emissions in China’s Transportation Industry," Sustainability, MDPI, vol. 12(7), pages 1-20, March.
    8. Suyi Kim, 2019. "Decomposition Analysis of Greenhouse Gas Emissions in Korea’s Transportation Sector," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    9. González, Rosa Marina & Marrero, Gustavo A. & Rodríguez-López, Jesús & Marrero, Ángel S., 2019. "Analyzing CO2 emissions from passenger cars in Europe: A dynamic panel data approach," Energy Policy, Elsevier, vol. 129(C), pages 1271-1281.
    10. M'raihi, Rafaa & Mraihi, Talel & Harizi, Riadh & Taoufik Bouzidi, Mohamed, 2015. "Carbon emissions growth and road freight: Analysis of the influencing factors in Tunisia," Transport Policy, Elsevier, vol. 42(C), pages 121-129.
    11. Xiaoshu Cao & Shishu OuYang & Dan Liu & Wenyue Yang, 2019. "Spatiotemporal Patterns and Decomposition Analysis of CO 2 Emissions from Transportation in the Pearl River Delta," Energies, MDPI, vol. 12(11), pages 1-17, June.
    12. Anwar, Ahsan & Sharif, Arshian & Fatima, Saba & Ahmad, Paiman & Sinha, Avik & Khan, Syed Abdul Rehman & Jermsittiparsert, Kittisak, 2021. "The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach," MPRA Paper 108160, University Library of Munich, Germany, revised 2021.
    13. Geoffrey Udoka Nnadiri & Anthony S. F. Chiu & Jose Bienvenido Manuel Biona & Neil Stephen Lopez, 2021. "Comparison of Driving Forces to Increasing Traffic Flow and Transport Emissions in Philippine Regions: A Spatial Decomposition Study," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    14. Yang Song & Kevin R. Gurney, 2020. "The Relationship between On-Road FFCO 2 Emissions and Socio-Economic/Urban Form Factors for Global Cities: Significance, Robustness and Implications," Sustainability, MDPI, vol. 12(15), pages 1-24, July.
    15. Fernando Ramos-Quintana & Efraín Tovar-Sánchez & Hugo Saldarriaga-Noreña & Héctor Sotelo-Nava & Juan Paulo Sánchez-Hernández & María-Luisa Castrejón-Godínez, 2019. "A CBR–AHP Hybrid Method to Support the Decision-Making Process in the Selection of Environmental Management Actions," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    16. Marrero, Ángel S. & Marrero, Gustavo A. & González, Rosa Marina & Rodríguez-López, Jesús, 2021. "Convergence in road transport CO2 emissions in Europe," Energy Economics, Elsevier, vol. 99(C).
    17. Luo, Xiao & Dong, Liang & Dou, Yi & Liang, Hanwei & Ren, Jingzheng & Fang, Kai, 2016. "Regional disparity analysis of Chinese freight transport CO2 emissions from 1990 to 2007: Driving forces and policy challenges," Journal of Transport Geography, Elsevier, vol. 56(C), pages 1-14.
    18. Song, Yan & Zhang, Ming & Shan, Cheng, 2019. "Research on the decoupling trend and mitigation potential of CO2 emissions from China's transport sector," Energy, Elsevier, vol. 183(C), pages 837-843.
    19. Hanafizadeh, Payam & Navardi, Zeinab & Bamdad Soofi, Jahanyar, 2010. "An attitude study on the environmental effects of rationing petrol in Tehran," Energy Policy, Elsevier, vol. 38(11), pages 6830-6848, November.
    20. Rafaa Mraïhi & Riadh Harizi, 2014. "Road Freight Transport and Carbon Dioxide Emissions: Policy Options for Tunisia," Energy & Environment, , vol. 25(1), pages 79-92, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:8:p:4588-:d:791939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.