IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2023i1p142-d1305772.html
   My bibliography  Save this article

Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms

Author

Listed:
  • Yaren Aydın

    (Department of Civil Engineering, Istanbul University-Cerrahpasa, Istanbul 34820, Turkey)

  • Celal Cakiroglu

    (Department of Civil Engineering, Turkish-German University, Istanbul 34820, Turkey)

  • Gebrail Bekdaş

    (Department of Civil Engineering, Istanbul University-Cerrahpasa, Istanbul 34820, Turkey)

  • Ümit Işıkdağ

    (Department of Informatics, Mimar Sinan Fine Arts University, Istanbul 34427, Turkey)

  • Sanghun Kim

    (Department of Civil & Environmental Engineering, Temple University, Philadelphia, PA 19122, USA)

  • Junhee Hong

    (College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea)

  • Zong Woo Geem

    (College of IT Convergence, Gachon University, Seongnam 13120, Republic of Korea)

Abstract

Due to environmental impacts and the need for energy efficiency, the cement industry aims to make more durable and sustainable materials with less energy requirements without compromising mechanical properties based on UN Sustainable Development Goals 9 and 11. Carbon dioxide (CO 2 ) emission into the atmosphere is mostly the result of human-induced activities and causes dangerous environmental impacts by increasing the average temperature of the earth. Since the production of ordinary Portland cement (PC) is a major contributor to CO 2 emissions, this study proposes alkali-activated binders as an alternative to reduce the environmental impact of ordinary Portland cement production. The dataset required for the training processes of these algorithms was created using Mendeley as a data-gathering instrument. Some of the most efficient state-of-the-art meta-heuristic optimization algorithms were applied to obtain the optimal neural network architecture with the highest performance. These neural network models were applied in the prediction of carbon emissions. The accuracy of these models was measured using statistical measures such as the mean squared error (MSE) and coefficient of determination (R 2 ). The results show that carbon emissions associated with the production of alkali-activated concrete can be predicted with high accuracy using state-of-the-art machine learning techniques. In this study, in which the binders produced by the alkali activation method were evaluated for their usability as a binder material to replace Portland cement, it is concluded that the most successful hyperparameter optimization algorithm for this study is the genetic algorithm (GA) with accurate mean squared error (MSE = 161.17) and coefficient of determination (R 2 = 0.90) values in the datasets.

Suggested Citation

  • Yaren Aydın & Celal Cakiroglu & Gebrail Bekdaş & Ümit Işıkdağ & Sanghun Kim & Junhee Hong & Zong Woo Geem, 2023. "Neural Network Predictive Models for Alkali-Activated Concrete Carbon Emission Using Metaheuristic Optimization Algorithms," Sustainability, MDPI, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:142-:d:1305772
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/1/142/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/1/142/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Leerbeck, Kenneth & Bacher, Peder & Junker, Rune Grønborg & Goranović, Goran & Corradi, Olivier & Ebrahimy, Razgar & Tveit, Anna & Madsen, Henrik, 2020. "Short-term forecasting of CO2 emission intensity in power grids by machine learning," Applied Energy, Elsevier, vol. 277(C).
    2. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    3. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balkin, Sandy, 2001. "On Forecasting Exchange Rates Using Neural Networks: P.H. Franses and P.V. Homelen, 1998, Applied Financial Economics, 8, 589-596," International Journal of Forecasting, Elsevier, vol. 17(1), pages 139-140.
    2. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    3. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    4. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    5. Ebrahimpour, Reza & Nikoo, Hossein & Masoudnia, Saeed & Yousefi, Mohammad Reza & Ghaemi, Mohammad Sajjad, 2011. "Mixture of MLP-experts for trend forecasting of time series: A case study of the Tehran stock exchange," International Journal of Forecasting, Elsevier, vol. 27(3), pages 804-816, July.
    6. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    7. Leung, Philip C.M. & Lee, Eric W.M., 2013. "Estimation of electrical power consumption in subway station design by intelligent approach," Applied Energy, Elsevier, vol. 101(C), pages 634-643.
    8. Donya Rahmani & Saeed Heravi & Hossein Hassani & Mansi Ghodsi, 2016. "Forecasting time series with structural breaks with Singular Spectrum Analysis, using a general form of recurrent formula," Papers 1605.02188, arXiv.org.
    9. Wei Sun & Yujun He & Hong Chang, 2015. "Forecasting Fossil Fuel Energy Consumption for Power Generation Using QHSA-Based LSSVM Model," Energies, MDPI, vol. 8(2), pages 1-21, January.
    10. Saman, Corina, 2011. "Scenarios of the Romanian GDP Evolution With Neural Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 129-140, December.
    11. Ghiassi, M. & Saidane, H. & Zimbra, D.K., 2005. "A dynamic artificial neural network model for forecasting time series events," International Journal of Forecasting, Elsevier, vol. 21(2), pages 341-362.
    12. Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
    13. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    14. Oscar Claveria & Salvador Torra, 2013. "“Forecasting Business surveys indicators: neural networks vs. time series models”," AQR Working Papers 201312, University of Barcelona, Regional Quantitative Analysis Group, revised Nov 2013.
    15. Bento, P.M.R. & Pombo, J.A.N. & Calado, M.R.A. & Mariano, S.J.P.S., 2018. "A bat optimized neural network and wavelet transform approach for short-term price forecasting," Applied Energy, Elsevier, vol. 210(C), pages 88-97.
    16. Nataša Glišović & Miloš Milenković & Nebojša Bojović & Libor Švadlenka & Zoran Avramović, 2016. "A hybrid model for forecasting the volume of passenger flows on Serbian railways," Operational Research, Springer, vol. 16(2), pages 271-285, July.
    17. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    18. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    19. Christian Fieberg & Daniel Metko & Thorsten Poddig & Thomas Loy, 2023. "Machine learning techniques for cross-sectional equity returns’ prediction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 289-323, March.
    20. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2023:i:1:p:142-:d:1305772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.