IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v45y2014icp389-400.html
   My bibliography  Save this article

Factorial decomposition of CO2 emissions: A generalized Divisia index approach

Author

Listed:
  • Vaninsky, Alexander

Abstract

This paper introduces a novel approach to estimating the impact of the major factors driving CO2 emissions: GDP, energy consumption, population, their carbon intensities, and other related indicators that may be chosen arbitrarily. The suggested approach is based on the generalization of the Divisia index to interconnected factors. The approach also extends the Kaya identity by explicitly including Gross Domestic Product and energy consumption. A computer program in R language aimed at automating the calculations is supplied. Factorial analysis of the United States' and China's CO2 emissions is provided as an example of application.

Suggested Citation

  • Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
  • Handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:389-400
    DOI: 10.1016/j.eneco.2014.07.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314001650
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    3. Ang, B. W. & Pandiyan, G., 1997. "Decomposition of energy-induced CO2 emissions in manufacturing," Energy Economics, Elsevier, vol. 19(3), pages 363-374, July.
    4. Mairet, Nicolas & Decellas, Fabrice, 2009. "Determinants of energy demand in the French service sector: A decomposition analysis," Energy Policy, Elsevier, vol. 37(7), pages 2734-2744, July.
    5. Wachsmann, Ulrike & Wood, Richard & Lenzen, Manfred & Schaeffer, Roberto, 2009. "Structural decomposition of energy use in Brazil from 1970 to 1996," Applied Energy, Elsevier, vol. 86(4), pages 578-587, April.
    6. Wenxiu Wang & Yaoqiu Kuang & Ningsheng Huang, 2011. "Study on the Decomposition of Factors Affecting Energy-Related Carbon Emissions in Guangdong Province, China," Energies, MDPI, Open Access Journal, vol. 4(12), pages 1-24, December.
    7. Ditya Nurdianto & Budy Resosudarmo, 2011. "Prospects and challenges for an ASEAN energy integration policy," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 13(2), pages 103-127, June.
    8. Barker, Terry, 1998. "The effects on competitiveness of coordinated versus unilateral fiscal policies reducing GHG emissions in the EU: an assessment of a 10% reduction by 2010 using the E3ME model," Energy Policy, Elsevier, vol. 26(14), pages 1083-1098, December.
    9. Papagiannaki, Katerina & Diakoulaki, Danae, 2009. "Decomposition analysis of CO2 emissions from passenger cars: The cases of Greece and Denmark," Energy Policy, Elsevier, vol. 37(8), pages 3259-3267, August.
    10. J. David T?bara & Diana Mangalagiu & Roland Kupers & Carlo C. Jaeger & Antoine Mandel & Leonidas Paroussos, 2013. "Transformative targets in sustainability policy making: the case of the 30% EU mitigation goal," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(8), pages 1180-1191, October.
    11. Holzmann, Angela & Adensam, Heidelinde & Kratena, Kurt & Schmid, Erwin, 2013. "Decomposing final energy use for heating in the residential sector in Austria," Energy Policy, Elsevier, vol. 62(C), pages 607-616.
    12. Terry Barker, 1999. "Achieving a 10% Cut in Europe's Carbon Dioxide Emissions using Additional Excise Duties: Coordinated, Uncoordinated and Unilateral Action using the Econometric Model E3ME," Economic Systems Research, Taylor & Francis Journals, vol. 11(4), pages 401-422.
    13. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    14. Gustavo A. Marrero & Francisco J. Ramos-Real, 2013. "Activity Sectors and Energy Intensity: Decomposition Analysis and Policy Implications for European Countries (1991–2005)," Energies, MDPI, Open Access Journal, vol. 6(5), pages 1-20, May.
    15. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    16. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    17. Ipek Tunç, G. & Türüt-AsIk, Serap & AkbostancI, Elif, 2009. "A decomposition analysis of CO2 emissions from energy use: Turkish case," Energy Policy, Elsevier, vol. 37(11), pages 4689-4699, November.
    18. Kawase, Reina & Matsuoka, Yuzuru & Fujino, Junichi, 2006. "Decomposition analysis of CO2 emission in long-term climate stabilization scenarios," Energy Policy, Elsevier, vol. 34(15), pages 2113-2122, October.
    19. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    20. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    21. Oh, Ilyoung & Wehrmeyer, Walter & Mulugetta, Yacob, 2010. "Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in South Korea," Energy Policy, Elsevier, vol. 38(1), pages 364-377, January.
    22. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    23. Shrestha, Ram M. & Anandarajah, Gabrial & Liyanage, Migara H., 2009. "Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific," Energy Policy, Elsevier, vol. 37(6), pages 2375-2384, June.
    24. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    25. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposing the decoupling of CO2 emissions and economic growth in Brazil," Ecological Economics, Elsevier, vol. 70(8), pages 1459-1469, June.
    26. Jung, Seok & An, Kyoung-Jin & Dodbiba, Gjergj & Fujita, Toyohisa, 2012. "Regional energy-related carbon emission characteristics and potential mitigation in eco-industrial parks in South Korea: Logarithmic mean Divisia index analysis based on the Kaya identity," Energy, Elsevier, vol. 46(1), pages 231-241.
    27. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    28. Hatzigeorgiou, Emmanouil & Polatidis, Heracles & Haralambopoulos, Dias, 2008. "CO2 emissions in Greece for 1990–2002: A decomposition analysis and comparison of results using the Arithmetic Mean Divisia Index and Logarithmic Mean Divisia Index techniques," Energy, Elsevier, vol. 33(3), pages 492-499.
    29. Terry Barker & Annela Anger & Unnada Chewpreecha & Hector Pollitt, 2012. "A new economics approach to modelling policies to achieve global 2020 targets for climate stabilisation," International Review of Applied Economics, Taylor & Francis Journals, vol. 26(2), pages 205-221, October.
    30. Malla, Sunil, 2009. "CO2 emissions from electricity generation in seven Asia-Pacific and North American countries: A decomposition analysis," Energy Policy, Elsevier, vol. 37(1), pages 1-9, January.
    31. Davis, W. Bart & Sanstad, Alan H. & Koomey, Jonathan G., 2003. "Contributions of weather and fuel mix to recent declines in US energy and carbon intensity," Energy Economics, Elsevier, vol. 25(4), pages 375-396, July.
    32. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
    33. Meng, Ming & Niu, Dongxiao, 2012. "Three-dimensional decomposition models for carbon productivity," Energy, Elsevier, vol. 46(1), pages 179-187.
    34. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    35. Shlomo Maital & Alexander Vaninsky, 2000. "Productivity Paradoxes and Their Resolution," Journal of Productivity Analysis, Springer, vol. 14(3), pages 191-207, November.
    36. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    37. Wang, Can & Chen, Jining & Zou, Ji, 2005. "Decomposition of energy-related CO2 emission in China: 1957–2000," Energy, Elsevier, vol. 30(1), pages 73-83.
    38. AkbostancI, Elif & Tunç, Gül Ipek & Türüt-AsIk, Serap, 2011. "CO2 emissions of Turkish manufacturing industry: A decomposition analysis," Applied Energy, Elsevier, vol. 88(6), pages 2273-2278, June.
    39. Chung, Hyun-Sik & Rhee, Hae-Chun, 2001. "A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries," Energy, Elsevier, vol. 26(1), pages 15-30.
    40. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    41. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    42. Ferdinand Vinuya & Ferdinand DiFurio & Erica Sandoval, 2010. "A decomposition analysis of CO2 emissions in the United States," Applied Economics Letters, Taylor & Francis Journals, vol. 17(10), pages 925-931.
    43. Bhattacharyya, Subhes C. & Matsumura, Wataru, 2010. "Changes in the GHG emission intensity in EU-15: Lessons from a decomposition analysis," Energy, Elsevier, vol. 35(8), pages 3315-3322.
    44. Zhang, Ming & Li, Huanan & Zhou, Min & Mu, Hailin, 2011. "Decomposition analysis of energy consumption in Chinese transportation sector," Applied Energy, Elsevier, vol. 88(6), pages 2279-2285, June.
    45. Hasanbeigi, Ali & de la Rue du Can, Stephane & Sathaye, Jayant, 2012. "Analysis and decomposition of the energy intensity of California industries," Energy Policy, Elsevier, vol. 46(C), pages 234-245.
    46. Mahony, Tadhg O', 2013. "Decomposition of Ireland's carbon emissions from 1990 to 2010: An extended Kaya identity," Energy Policy, Elsevier, vol. 59(C), pages 573-581.
    47. Ang, B.W. & Liu, Na, 2007. "Negative-value problems of the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 739-742, January.
    48. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    49. Henri-David Waisman & Celine Guivarch & Franck Lecocq, 2013. "The transportation sector and low-carbon growth pathways: modelling urban, infrastructure, and spatial determinants of mobility," Climate Policy, Taylor & Francis Journals, vol. 13(sup01), pages 106-129, March.
    50. Zhao, Min & Tan, Lirong & Zhang, Weiguo & Ji, Minhe & Liu, Yuan & Yu, Lizhong, 2010. "Decomposing the influencing factors of industrial carbon emissions in Shanghai using the LMDI method," Energy, Elsevier, vol. 35(6), pages 2505-2510.
    51. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    52. Tan, Zhongfu & Li, Li & Wang, Jianjun & Wang, Jianhui, 2011. "Examining the driving forces for improving China’s CO2 emission intensity using the decomposing method," Applied Energy, Elsevier, vol. 88(12), pages 4496-4504.
    53. Ma, Chunbo & Stern, David I., 2008. "Biomass and China's carbon emissions: A missing piece of carbon decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2517-2526, July.
    54. Wood, Richard & Lenzen, Manfred, 2006. "Zero-value problems of the logarithmic mean divisia index decomposition method," Energy Policy, Elsevier, vol. 34(12), pages 1326-1331, August.
    55. Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
    56. Jeong, Kyonghwa & Kim, Suyi, 2013. "LMDI decomposition analysis of greenhouse gas emissions in the Korean manufacturing sector," Energy Policy, Elsevier, vol. 62(C), pages 1245-1253.
    57. Gingrich, Simone & Kusková, Petra & Steinberger, Julia K., 2011. "Long-term changes in CO2 emissions in Austria and Czechoslovakia--Identifying the drivers of environmental pressures," Energy Policy, Elsevier, vol. 39(2), pages 535-543, February.
    58. Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
    59. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    60. Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
    61. He, Jie, 2010. "What is the role of openness for China's aggregate industrial SO2 emission?: A structural analysis based on the Divisia decomposition method," Ecological Economics, Elsevier, vol. 69(4), pages 868-886, February.
    62. Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
    63. John Vogler & Hannes Stephan, 2007. "The European Union in global environmental governance: Leadership in the making?," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 7(4), pages 389-413, December.
    64. Lin, Sue J. & Lu, I.J. & Lewis, Charles, 2006. "Identifying key factors and strategies for reducing industrial CO2 emissions from a non-Kyoto protocol member's (Taiwan) perspective," Energy Policy, Elsevier, vol. 34(13), pages 1499-1507, September.
    65. Rogan, Fionn & Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Decomposition analysis of gas consumption in the residential sector in Ireland," Energy Policy, Elsevier, vol. 42(C), pages 19-36.
    66. Huang, Jin-ping, 1993. "Industry energy use and structural change : A case study of The People's Republic of China," Energy Economics, Elsevier, vol. 15(2), pages 131-136, April.
    67. Wang, W.W. & Zhang, M. & Zhou, M., 2011. "Using LMDI method to analyze transport sector CO2 emissions in China," Energy, Elsevier, vol. 36(10), pages 5909-5915.
    68. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    69. Barker, Terry & Junankar, Sudhir & Pollitt, Hector & Summerton, Philip, 2007. "Carbon leakage from unilateral Environmental Tax Reforms in Europe, 1995-2005," Energy Policy, Elsevier, vol. 35(12), pages 6281-6292, December.
    70. Helen Briassoulis, 2004. "The institutional complexity of environmental policy and planning problems: the example of Mediterranean desertification," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 47(1), pages 115-135.
    71. Matthew A. Cole & Robert J.R. Elliott & Kenichi Shimamoto, 2005. "A Note on Trends in European Industrial Pollution Intensities: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 61-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
    2. repec:gam:jeners:v:11:y:2018:i:9:p:2398-:d:169152 is not listed on IDEAS
    3. Zhao, Xingrong & Zhang, Xi & Shao, Shuai, 2016. "Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment," Energy Economics, Elsevier, vol. 60(C), pages 275-292.
    4. repec:gam:jeners:v:11:y:2018:i:5:p:1157-:d:144796 is not listed on IDEAS
    5. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    6. Mohamad Taghvaee, Vahid & Hajiani, Parviz, 2015. "Environment, Energy, and Environmental Productivity of Energy: A Decomposition Analysis in China and the US," MPRA Paper 70057, University Library of Munich, Germany.
    7. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-14, February.
    8. Jianchang Lu & Weiguo Fan & Ming Meng, 2015. "Empirical Research on China’s Carbon Productivity Decomposition Model Based on Multi-Dimensional Factors," Energies, MDPI, Open Access Journal, vol. 8(4), pages 1-25, April.
    9. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    10. repec:eee:energy:v:150:y:2018:i:c:p:527-543 is not listed on IDEAS
    11. Lin, Boqiang & Du, Kerui, 2015. "Measuring energy rebound effect in the Chinese economy: An economic accounting approach," Energy Economics, Elsevier, vol. 50(C), pages 96-104.

    More about this item

    Keywords

    Air pollution; Environmental impact; Index numbers; Divisia index; Kaya identity;

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:45:y:2014:i:c:p:389-400. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.