IDEAS home Printed from https://ideas.repec.org/p/uab/wprdea/wpdea1905.html

Driving forces of CO2 emissions and energy intensity in Colombia

Author

Listed:
  • Lourdes Isabel Patiño

    (Universidad Castro Carazo, Costa Rica)

  • Vicent Alcántara Escolano

    (Departament d'Economia Aplicada, Universitat Autonoma de Barcelona)

  • Emilio Padilla Rosa

    (Departament d'Economia Aplicada, Universitat Autonoma de Barcelona)

Abstract

We analyze the driving factors of CO2 emissions generation and energy intensity during almost four decades. We apply a factorial decomposition for CO2 emissions, starting from the Kaya identity, using the logarithmic mean Divisia index method. The results indicate that the increase in emissions is mainly explained by the affluence effect and the population effect, but is partially offset by the effect of energy intensity and, to a lesser extent, the carbonization effect. We then analyze the driving factors of energy intensity. With this objective, we first transform final energy into its total primary energy requirements. We find that the decrease in total energy intensity is mainly due to the reduction in sectoral energy intensity and, to a lesser extent, to structural change. The most important contribution to the reduction in sectoral energy intensity is explained by efficiency improvement in the transport sector, but also by industry, while the decrease in the share of industry would be the most relevant component explaining the reduction of the structural change effect. This is the first application of this type to the Colombian case and provides useful information for the analysis and design of energy and environmental policies.

Suggested Citation

  • Lourdes Isabel Patiño & Vicent Alcántara Escolano & Emilio Padilla Rosa, 2019. "Driving forces of CO2 emissions and energy intensity in Colombia," Working Papers wpdea1905, Department of Applied Economics at Universitat Autonoma of Barcelona.
  • Handle: RePEc:uab:wprdea:wpdea1905
    as

    Download full text from publisher

    File URL: https://ddd.uab.cat/repec/doc/wpdea1905.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Juan Fernández, Aránzazu & Poncela, Pilar & Rodríguez Caballero, Carlos Vladimir & Ruiz Ortega, Esther, 2022. "Economic activity and climate change," DES - Working Papers. Statistics and Econometrics. WS 35044, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Rifat Nahrin & Md. Hasanur Rahman & Shapan Chandra Majumder & Miguel Angel Esquivias, 2023. "Economic Growth and Pollution Nexus in Mexico, Colombia, and Venezuela (G-3 Countries): The Role of Renewable Energy in Carbon Dioxide Emissions," Energies, MDPI, vol. 16(3), pages 1-17, January.
    3. Rivera-Niquepa, Juan David & De Oliveira-De Jesus, Paulo M. & Yusta, Jose M., 2025. "Trend-based multi-period decomposition and decoupling methodology for energy-related carbon dioxide emissions: A case study of Portugal," Utilities Policy, Elsevier, vol. 93(C).
    4. Jiang, Qichuan & Ma, Xuejiao & Wang, Yun, 2021. "How does the one belt one road initiative affect the green economic growth?," Energy Economics, Elsevier, vol. 101(C).
    5. World Bank Group, 2023. "Colombia - Informe Sobre el Clima y el Desarrollo del País [Colombia Country Climate and Development Report]," World Bank Publications - Reports 40056, The World Bank Group.
    6. Eric Fosu Oteng-Abayie & Foster Awindolla Asaki & Maame Esi Eshun & Eric Abokyi, 2022. "Decomposition of the decoupling of CO2 emissions from economic growth in Ghana," Future Business Journal, Springer, vol. 8(1), pages 1-13, December.
    7. Qingquan Jiang & Jinhuang Lin & Qianqian Wei & Rui Zhang & Hongzhen Fu, 2023. "Demystifying the Economic Growth and CO 2 Nexus in Fujian’s Key Industries Based on Decoupling and LMDI Model," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    8. Riveros, Jeisson A. & Shahbaz, Muhammad, 2024. "Decomposition and decoupling: A case study of Colombia's energy consumption and economic growth," Energy, Elsevier, vol. 312(C).
    9. Zhang, Shufan & Ma, Minda & Li, Kai & Ma, Zhili & Feng, Wei & Cai, Weiguang, 2022. "Historical carbon abatement in the commercial building operation: China versus the US," Energy Economics, Elsevier, vol. 105(C).
    10. Florian Marcel Nuţă & Alina Cristina Nuţă & Cristina Gabriela Zamfir & Stefan-Mihai Petrea & Dan Munteanu & Dragos Sebastian Cristea, 2021. "National Carbon Accounting—Analyzing the Impact of Urbanization and Energy-Related Factors upon CO 2 Emissions in Central–Eastern European Countries by Using Machine Learning Algorithms and Panel Data," Energies, MDPI, vol. 14(10), pages 1-23, May.
    11. Peng, Huaxi & Kan, Siyi & Meng, Jing & Li, Shuping & Cui, Can & Tan, Chang & Wang, Zhenyu & Wen, Quan & Guan, Dabo, 2024. "Emission accounting and drivers in South American countries," Applied Energy, Elsevier, vol. 358(C).
    12. Cosimo Magazzino & Parisa Pakrooh & Mohammad Zoynul Abedin, 2024. "A decomposition and decoupling analysis for carbon dioxide emissions: evidence from OECD countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28539-28566, November.
    13. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    14. Arunava Bandyopadhyay & Soumen Rej & Kashif Raza Abbasi & Ashar Awan, 2023. "Nexus between tourism, hydropower, and CO2 emissions in India: fresh insights from ARDL and cumulative fourier frequency domain causality," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(10), pages 10903-10927, October.
    15. Olimjon Saidmamatov & Nicolas Tetreault & Dilmurad Bekjanov & Elbek Khodjaniyazov & Ergash Ibadullaev & Yuldoshboy Sobirov & Lugas Raka Adrianto, 2023. "The Nexus between Agriculture, Water, Energy and Environmental Degradation in Central Asia—Empirical Evidence Using Panel Data Models," Energies, MDPI, vol. 16(7), pages 1-20, April.
    16. Gupta, Supratim Das & Baudino, Marco & Sarkar, Saikat, 2025. "Does the environmental Kuznets curve hold across sectors? Evidence from developing and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    17. Darío Serrano-Puente, 2021. "Are we moving toward an energy-efficient low-carbon economy? An input–output LMDI decomposition of CO $$_{2}$$ 2 emissions for Spain and the EU28," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(2), pages 151-229, June.
    18. Juan David Rivera-Niquepa & Daniela Rojas-Lozano & Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2022. "Decomposition Analysis of the Aggregate Carbon Intensity (ACI) of the Power Sector in Colombia—A Multi-Temporal Analysis," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    19. Jin, Taeyoung, 2022. "The evolutionary renewable energy and mitigation impact in OECD countries," Renewable Energy, Elsevier, vol. 189(C), pages 570-586.
    20. Hafsa Jabeen & Ayesha Naz & Abdul Rashid, 2025. "Socio-Economic Determinants of Energy Intensity: Comparative Evidence from Developed and Developing Countries," Journal of Economic Sciences, Federal Urdu University Islamabad, Department of Economics, vol. 4(1), pages 1-20, June.
    21. Nusrat Yaqoob & Zakir Hussain Dahri, 2025. "Assessing Water Use Efficiency of Cotton Crop in Pakistan: Impact of Geo-climatic and Socio-economic Factors," Journal of Economic Sciences, Federal Urdu University Islamabad, Department of Economics, vol. 4(1), pages 21-36, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uab:wprdea:wpdea1905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dept. Economia Aplicada (email available below). General contact details of provider: https://edirc.repec.org/data/dauabes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.