IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i7p3684-3690.html
   My bibliography  Save this article

Changes in industrial electricity consumption in china from 1998 to 2007

Author

Listed:
  • Wang, Wenchao
  • Mu, Hailin
  • Kang, Xudong
  • Song, Rongchen
  • Ning, Yadong

Abstract

Electricity consumption in the industrial sector experienced a dramatic increase between 1998 and 2007, accounting for approximately 75% of China's total electricity consumption. This study analyzes the potential factors influencing the growth of electricity consumption in China's industrial sector over the past decade using a logarithmic mean Divisia index I decomposition method. Results show that activity effect and shift effect (caused by the change in the electricity's share of industrial energy use) are the major factors responsible for the rise in electricity consumption between 1998 and 2007. It is found that structural change also contributed to the increase in electricity consumption, it had only a small effect. In contrast, the technological effect is responsible for a decrease in electricity consumption during this period. The influences of technological effects and shift effects followed approximately an inverse-U-shaped and U-shaped curve, respectively. Furthermore, the results show that the main contributors to incremental electricity consumption among industrial subsectors were manufacturing of raw chemical material and products, manufacturing of non-metal mineral products, smelting and pressing of ferrous and non-ferrous metals, and production and supply of electric power and heat power. These sectors should take priority for industrial restructuring in order to implement policies for energy and electricity savings.

Suggested Citation

  • Wang, Wenchao & Mu, Hailin & Kang, Xudong & Song, Rongchen & Ning, Yadong, 2010. "Changes in industrial electricity consumption in china from 1998 to 2007," Energy Policy, Elsevier, vol. 38(7), pages 3684-3690, July.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3684-3690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00150-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    3. Yuan, Jiahai & Zhao, Changhong & Yu, Shunkun & Hu, Zhaoguang, 2007. "Electricity consumption and economic growth in China: Cointegration and co-feature analysis," Energy Economics, Elsevier, vol. 29(6), pages 1179-1191, November.
    4. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    5. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    6. Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
    7. Zhang, ZhongXiang, 2003. "Why did the energy intensity fall in China's industrial sector in the 1990s? The relative importance of structural change and intensity change," Energy Economics, Elsevier, vol. 25(6), pages 625-638, November.
    8. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    9. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    10. Zha, Donglan & Zhou, Dequn & Ding, Ning, 2009. "The contribution degree of sub-sectors to structure effect and intensity effects on industry energy intensity in China from 1993 to 2003," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 895-902, May.
    11. Richard F. Garbaccio & Mun S. Ho & Dale W. Jorgenson, 1999. "Why Has the Energy-Output Ratio Fallen in China?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-91.
    12. Sinton, Jonathan E. & Fridley, David G., 2000. "What goes up: recent trends in China's energy consumption," Energy Policy, Elsevier, vol. 28(10), pages 671-687, August.
    13. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    14. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    15. X. Q. Liu & B. W. Ang & H.L. Ong, 1992. "The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 161-178.
    16. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    17. Steenhof, Paul A., 2006. "Decomposition of electricity demand in China's industrial sector," Energy Economics, Elsevier, vol. 28(3), pages 370-384, May.
    18. Sinton, Jonathan E & Levine, Mark D & Qingyi, Wang, 1998. "Energy efficiency in China: accomplishments and challenges," Energy Policy, Elsevier, vol. 26(11), pages 813-829, September.
    19. Lin, Jiang & Zhou, Nan & Levine, Mark & Fridley, David, 2008. "Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?," Energy Policy, Elsevier, vol. 36(3), pages 954-970, March.
    20. Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
    21. Sinton, Jonathan E. & Levine, Mark D., 1994. "Changing energy intensity in Chinese industry : The relatively importance of structural shift and intensity change," Energy Policy, Elsevier, vol. 22(3), pages 239-255, March.
    22. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Zhuangli & Zhang, Yongjun & Li, Canbing & Li, Jing & Cao, Yijia & Luo, Diansheng & Cao, Huazhen, 2015. "Utilization efficiency of electrical equipment within life cycle assessment: Indexes, analysis and a case," Energy, Elsevier, vol. 88(C), pages 885-896.
    2. Liton Chandra Voumik & Md. Azharul Islam & Abidur Rahaman & Md. Maznur Rahman, 2022. "Emissions of carbon dioxide from electricity production in ASEAN countries: GMM and quantile regression analysis," SN Business & Economics, Springer, vol. 2(9), pages 1-20, September.
    3. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    4. Wu, Wanlu & Cheng, Yuanyuan & Lin, Xiqiao & Yao, Xin, 2019. "How does the implementation of the Policy of Electricity Substitution influence green economic growth in China?," Energy Policy, Elsevier, vol. 131(C), pages 251-261.
    5. Lin, Boqiang & Raza, Muhammad Yousaf, 2021. "Analysis of electricity consumption in Pakistan using index decomposition and decoupling approach," Energy, Elsevier, vol. 214(C).
    6. Lars Wenzel & André Wolf, 2014. "Changing Patterns of Electricity Usage in European Manufacturing: A Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 516-530.
    7. Shi, Kaifang & Yu, Bailang & Huang, Chang & Wu, Jianping & Sun, Xiufeng, 2018. "Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road," Energy, Elsevier, vol. 150(C), pages 847-859.
    8. Ming Zhang & Yan Song & Lixia Yao, 2015. "Exploring commercial sector building energy consumption in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2673-2682, February.
    9. Ming Zhang & Yan Song, 2015. "Exploring influence factors governing the changes in China’s final energy consumption under a new framework," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 653-668, August.
    10. Fang, Debin & Hao, Peng & Hao, Jian, 2019. "Study of the influence mechanism of China's electricity consumption based on multi-period ST-LMDI model," Energy, Elsevier, vol. 170(C), pages 730-743.
    11. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    12. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    13. Haein Kim & Minsang Kim & Hyunggeun Kim & Sangkyu Park, 2020. "Decomposition Analysis of CO 2 Emission from Electricity Generation: Comparison of OECD Countries before and after the Financial Crisis," Energies, MDPI, vol. 13(14), pages 1-16, July.
    14. Margarida R. Alves & Victor Moutinho, 2013. "Decomposition analysis for energy-related CO2 emissions intensity over 1996-2009 in Portuguese Industrial Sectors," CEFAGE-UE Working Papers 2013_10, University of Evora, CEFAGE-UE (Portugal).
    15. Wang, Wenwen & Liu, Xiao & Zhang, Ming & Song, Xuefeng, 2014. "Using a new generalized LMDI (logarithmic mean Divisia index) method to analyze China's energy consumption," Energy, Elsevier, vol. 67(C), pages 617-622.
    16. Shi, Kaifang & Chen, Yun & Yu, Bailang & Xu, Tingbao & Yang, Chengshu & Li, Linyi & Huang, Chang & Chen, Zuoqi & Liu, Rui & Wu, Jianping, 2016. "Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data," Applied Energy, Elsevier, vol. 184(C), pages 450-463.
    17. Yan, Qingyou & Zhang, Qian & Zou, Xin, 2016. "Decomposition analysis of carbon dioxide emissions in China's regional thermal electricity generation, 2000–2020," Energy, Elsevier, vol. 112(C), pages 788-794.
    18. Xie, Pinjie & Li, Han & Sun, Feihu & Tian, Huizhen, 2021. "Analysis of the dependence of economic growth on electric power input and its influencing factors in China," Energy Policy, Elsevier, vol. 158(C).
    19. Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
    20. Ming Zhang & Qing Xia & Wenwen Wang & Min Zhou, 2014. "Study on temporal and spatial evolution of China’s oil supply and consumption," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 809-825, June.
    21. Tao Lv & Duyang Pi & Xu Deng & Xiaoran Hou & Jie Xu & Liya Wang, 2022. "Spatiotemporal Evolution and Influencing Factors of Electricity Consumption in the Yangtze River Delta Region," Energies, MDPI, vol. 15(5), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    2. Ma, Hengyun & Oxley, Les & Gibson, John, 2010. "China's energy economy: A survey of the literature," Economic Systems, Elsevier, vol. 34(2), pages 105-132, June.
    3. Ma, Chunbo, 2010. "Account for sector heterogeneity in China's energy consumption: Sector price indices vs. GDP deflator," Energy Economics, Elsevier, vol. 32(1), pages 24-29, January.
    4. Zhao, Xiaoli & Ma, Chunbo & Hong, Dongyue, 2010. "Why did China's energy intensity increase during 1998-2006: Decomposition and policy analysis," Energy Policy, Elsevier, vol. 38(3), pages 1379-1388, March.
    5. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    6. Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
    7. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    8. Wu, Yanrui, 2012. "Energy intensity and its determinants in China's regional economies," Energy Policy, Elsevier, vol. 41(C), pages 703-711.
    9. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Substitution possibilities and determinants of energy intensity for China," Energy Policy, Elsevier, vol. 37(5), pages 1793-1804, May.
    10. Yang, Guangfei & Li, Wenli & Wang, Jianliang & Zhang, Dongqing, 2016. "A comparative study on the influential factors of China's provincial energy intensity," Energy Policy, Elsevier, vol. 88(C), pages 74-85.
    11. Cansino, José M. & Sánchez-Braza, Antonio & Rodríguez-Arévalo, María L., 2015. "Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 749-759.
    12. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
    13. Duran, Elisa & Aravena, Claudia & Aguilar, Renato, 2015. "Analysis and decomposition of energy consumption in the Chilean industry," Energy Policy, Elsevier, vol. 86(C), pages 552-561.
    14. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    15. Yang Yu & Qiuyue Kong, 2017. "Analysis on the influencing factors of carbon emissions from energy consumption in China based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1691-1707, September.
    16. Wu, Libo & Kaneko, Shinji & Matsuoka, Shunji, 2006. "Dynamics of energy-related CO2 emissions in China during 1980 to 2002: The relative importance of energy supply-side and demand-side effects," Energy Policy, Elsevier, vol. 34(18), pages 3549-3572, December.
    17. Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
    18. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    19. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    20. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:7:p:3684-3690. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.