IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v23y2002i3p357-378.html
   My bibliography  Save this article

Structural Decomposition Analysis of Physical Flows in the Economy

Author

Listed:
  • Rutger Hoekstra
  • Jeroen van den Bergh

Abstract

Many environmental problems can be attributedto the extraction and emissions of physicalsubstances. Increasing our understanding of theeconomic and technological driving forcesbehind these physical flows can contribute tosolving the environmental problems related tothem. The input-output framework is a usefulsetting in which to integrate detailedinformation about economic structure andphysical flows. In this article a specificmethod in input-output analysis is reviewed,namely Structural Decomposition Analysis (SDA).It is based on comparative static analysis,which decomposes historical changes of a policyvariable into determinant effects. SDA has beenapplied, for example, to analyze the demand andtechnological driving forces of energy use,CO 2 -emissions and various other pollutantsand resources. This article examines thetheoretical aspects of structuraldecomposition, in particular those concerningphysical flows and environmental issues.Furthermore, the article includes an extensivesurvey of empirical studies. Copyright Kluwer Academic Publishers 2002

Suggested Citation

  • Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
  • Handle: RePEc:kap:enreec:v:23:y:2002:i:3:p:357-378
    DOI: 10.1023/A:1021234216845
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1021234216845
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1021234216845?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
    2. Adam Rose & Shih-Mo Lin, 1995. "Regrets or No Regrets -- That is the Question: Is Conservation an Costless CO2 Mitigation Strategy?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 67-88.
    3. Paul B. Siegel & Jeffrey Alwang & Thomas G. Johnson, 1995. "Decomposing Sources of Regional Growth with an Input-output Model: A Framework for Policy Analysis," International Regional Science Review, , vol. 18(3), pages 331-353, July.
    4. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    5. F. Duchin & A.E. Steenge, 1999. "Input–Output Analysis, Technology and the Environment," Chapters, in: Jeroen C.J.M. van den Bergh (ed.), Handbook of Environmental and Resource Economics, chapter 68, Edward Elgar Publishing.
    6. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    7. Ang, B. W. & Lee, P. W., 1996. "Decomposition of industrial energy consumption: The energy coefficient approach," Energy Economics, Elsevier, vol. 18(1-2), pages 129-143, April.
    8. Common, M. S. & Salma, U., 1992. "Accounting for changes in Australian carbon dioxide emissions," Energy Economics, Elsevier, vol. 14(3), pages 217-225, July.
    9. Chang, Yih F & Lin, Sue J, 1998. "Structural decomposition of industrial CO2 emission in Taiwan: an input-output approach," Energy Policy, Elsevier, vol. 26(1), pages 5-12, January.
    10. Stephen Casler & Adam Rose, 1998. "Carbon Dioxide Emissions in the U.S. Economy: A Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 349-363, April.
    11. Richard F. Garbaccio & Mun S. Ho & Dale W. Jorgenson, 1999. "Why Has the Energy-Output Ratio Fallen in China?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-91.
    12. Ang, BW, 1994. "Decomposition of industrial energy consumption : The energy intensity approach," Energy Economics, Elsevier, vol. 16(3), pages 163-174, July.
    13. Bouman, Mathijs & Heijungs, Reinout & van der Voet, Ester & van den Bergh, Jeroen C. J. M. & Huppes, Gjalt, 2000. "Material flows and economic models: an analytical comparison of SFA, LCA and partial equilibrium models," Ecological Economics, Elsevier, vol. 32(2), pages 195-216, February.
    14. X. Q. Liu & B. W. Ang & H.L. Ong, 1992. "The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 161-178.
    15. Wier, Mette & Hasler, Berit, 1999. "Accounting for nitrogen in Denmark--a structural decomposition analysis," Ecological Economics, Elsevier, vol. 30(2), pages 317-331, August.
    16. Henrik Jacobsen, 2000. "Energy Demand, Structural Change and Trade: A Decomposition Analysis of the Danish Manufacturing Industry," Economic Systems Research, Taylor & Francis Journals, vol. 12(3), pages 319-343.
    17. repec:dgr:rugsom:95d36 is not listed on IDEAS
    18. Jan A van der Linden & Erik Dietzenbacher, 2000. "The Determinants of Structural Change in the European Union: A New Application of RAS," Environment and Planning A, , vol. 32(12), pages 2205-2229, December.
    19. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    20. Mette Wier, 1998. "Sources of Changes in Emissions from Energy: A Structural Decomposition Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 99-112.
    21. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    22. M. S. Common & U. Salma, 1992. "Accounting for Australian Carbon Dioxide Emissions," The Economic Record, The Economic Society of Australia, vol. 68(1), pages 31-42, March.
    23. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
    24. Geoffrey J. D. Hewings & Michael Sonis & David Boyce (ed.), 2002. "Trade, Networks and Hierarchies," Advances in Spatial Science, Springer, number 978-3-662-04786-6, Fall.
    25. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    26. Erik Dietzenbacher & Rutger Hoekstra, 2002. "The RAS Structural Decomposition Approach," Advances in Spatial Science, in: Geoffrey J. D. Hewings & Michael Sonis & David Boyce (ed.), Trade, Networks and Hierarchies, chapter 10, pages 179-199, Springer.
    27. Gould, Brian W. & Kulshreshtha, Surendra N., 1986. "An interindustry analysis of structural change and energy use linkages in the Saskatchewan economy," Energy Economics, Elsevier, vol. 8(3), pages 186-196, July.
    28. Jeroen C.J.M. van den Bergh (ed.), 1999. "Handbook of Environmental and Resource Economics," Books, Edward Elgar Publishing, number 801.
    29. Fukuda, Shin-ichi & Hoshi, Takeo & Ito, Takatoshi & Rose, Andrew, 2006. "International Finance," Journal of the Japanese and International Economies, Elsevier, vol. 20(4), pages 455-458, December.
    30. Common, M S & Salma, U, 1992. "Accounting for Australian Carbon Dioxide Emissions," The Economic Record, The Economic Society of Australia, vol. 68(200), pages 31-42, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    2. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    3. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    4. Lenzen, Manfred, 2006. "Decomposition analysis and the mean-rate-of-change index," Applied Energy, Elsevier, vol. 83(3), pages 185-198, March.
    5. Uduak Akpan & Ovunda Green & Subhes Bhattacharyya & Salisu Isihak, 2015. "Effect of Technology Change on $$\hbox {CO}_{2}$$ CO 2 Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 165-189, June.
    6. Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.
    7. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    8. Hong, Jingke & Li, Clyde Zhengdao & Shen, Qiping & Xue, Fan & Sun, Bingxia & Zheng, Wei, 2017. "An Overview of the driving forces behind energy demand in China's construction industry: Evidence from 1990 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 85-94.
    9. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    10. Gui, Shusen & Mu, Hailin & Li, Nan, 2014. "Analysis of impact factors on China's CO2 emissions from the view of supply chain paths," Energy, Elsevier, vol. 74(C), pages 405-416.
    11. Zhou, Xin & Imura, Hidefumi, 2011. "How does consumer behavior influence regional ecological footprints? An empirical analysis for Chinese regions based on the multi-region input–output model," Ecological Economics, Elsevier, vol. 71(C), pages 171-179.
    12. Mukhopadhyay, Kakali & Forssell, Osmo, 2005. "An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973-1974 to 1996-1997," Ecological Economics, Elsevier, vol. 55(2), pages 235-250, November.
    13. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    14. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    15. Radwan, Amira & Hongyun, Han & Achraf, Abdelhak & Mustafa, Ahmed M., 2022. "Energy use and energy-related carbon dioxide emissions drivers in Egypt's economy: Focus on the agricultural sector with a structural decomposition analysis," Energy, Elsevier, vol. 258(C).
    16. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    17. Paul De Boer, 2008. "Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 97-109.
    18. J., Pablo Muñoz & Hubacek, Klaus, 2008. "Material implication of Chile's economic growth: Combining material flow accounting (MFA) and structural decomposition analysis (SDA)," Ecological Economics, Elsevier, vol. 65(1), pages 136-144, March.
    19. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    20. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:23:y:2002:i:3:p:357-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.