IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v73y2017icp85-94.html
   My bibliography  Save this article

An Overview of the driving forces behind energy demand in China's construction industry: Evidence from 1990 to 2012

Author

Listed:
  • Hong, Jingke
  • Li, Clyde Zhengdao
  • Shen, Qiping
  • Xue, Fan
  • Sun, Bingxia
  • Zheng, Wei

Abstract

The rapid urbanization in China has produced a large demand for energy in the past decades. It is therefore urgent to have an understanding of the driving forces behind the energy increase in the construction industry. This study applies structural decomposition analysis (SDA) to quantify the effects of driving factors from insight into consumption and production. The results show that the energy consumption trajectory of China's construction industry is the result of competition between the effect of increasing final demand and improvement in energy efficiency. Although the effect of consistent efforts in structure optimization by the central government was significant from 2007 to 2012, the potential to save much energy still lies in structure optimization in energy, production, and final demand. According to the projection, structural upgrades in economy would be the most important factor for energy reduction in 2020. Scenario analysis further indicated that the percentage change of energy increments in 2020 can be reduced at 22% of 2010 level under the optimistic scenario. Sector aggregation analysis revealed that more aggregates would increase uncertainty to some extent and result in a misinterpretation of the importance of the underlying factors. According to the quantitative analysis in this study, the percentage change of total embodied energy consumption in the construction industry should be limited below 25% of 2010 level at the end of the 13th Five-Year Plan.

Suggested Citation

  • Hong, Jingke & Li, Clyde Zhengdao & Shen, Qiping & Xue, Fan & Sun, Bingxia & Zheng, Wei, 2017. "An Overview of the driving forces behind energy demand in China's construction industry: Evidence from 1990 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 85-94.
  • Handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:85-94
    DOI: 10.1016/j.rser.2017.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117300217
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Su, Bin & Huang, H.C. & Ang, B.W. & Zhou, P., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of sector aggregation," Energy Economics, Elsevier, vol. 32(1), pages 166-175, January.
    3. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2011. "The quantification of the embodied impacts of construction projects on energy, environment, and society based on I-O LCA," Energy Policy, Elsevier, vol. 39(10), pages 6321-6330, October.
    4. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    5. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    6. Mette Wier, 1998. "Sources of Changes in Emissions from Energy: A Structural Decomposition Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 99-112.
    7. Wang, Qiang & Chen, Xi & Jha, Awadhesh N. & Rogers, Howard, 2014. "Natural gas from shale formation – The evolution, evidences and challenges of shale gas revolution in United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1-28.
    8. G. Boyd & J. F. McDonald & M. Ross & D. A. Hansont, 1987. "Separating the Changing Composition of U.S. Manufacturing Production from Energy Efficiency Improvements: A Divisia Index Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 77-96.
    9. Chang, Yih F. & Lewis, Charles & Lin, Sue J., 2008. "Comprehensive evaluation of industrial CO2 emission (1989-2004) in Taiwan by input-output structural decomposition," Energy Policy, Elsevier, vol. 36(7), pages 2471-2480, July.
    10. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
    11. Howarth, Richard B. & Schipper, Lee & Duerr, Peter A. & Strøm, Steinar, 1991. "Manufacturing energy use in eight OECD countries : Decomposing the impacts of changes in output, industry structure and energy intensity," Energy Economics, Elsevier, vol. 13(2), pages 135-142, April.
    12. Chang, Yih F & Lin, Sue J, 1998. "Structural decomposition of industrial CO2 emission in Taiwan: an input-output approach," Energy Policy, Elsevier, vol. 26(1), pages 5-12, January.
    13. Cao, Shuyan & Xie, Gaodi & Zhen, Lin, 2010. "Total embodied energy requirements and its decomposition in China's agricultural sector," Ecological Economics, Elsevier, vol. 69(7), pages 1396-1404, May.
    14. Hong, Jingke & Shen, Qiping & Xue, Fan, 2016. "A multi-regional structural path analysis of the energy supply chain in China's construction industry," Energy Policy, Elsevier, vol. 92(C), pages 56-68.
    15. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    16. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    17. Wang, Yafei & Zhao, Hongyan & Li, Liying & Liu, Zhu & Liang, Sai, 2013. "Carbon dioxide emission drivers for a typical metropolis using input–output structural decomposition analysis," Energy Policy, Elsevier, vol. 58(C), pages 312-318.
    18. Bingsheng Liu & Xueqing Wang & Yuan Chen & Yinghua Shen, 2013. "Market structure of China's construction industry based on the Panzar-Rosse model," Construction Management and Economics, Taylor & Francis Journals, vol. 31(7), pages 731-745, July.
    19. X. Q. Liu & B. W. Ang & H.L. Ong, 1992. "The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 161-178.
    20. Wier, Mette & Hasler, Berit, 1999. "Accounting for nitrogen in Denmark--a structural decomposition analysis," Ecological Economics, Elsevier, vol. 30(2), pages 317-331, August.
    21. Reitler, W. & Rudolph, M. & Schaefer, H., 1987. "Analysis of the factors influencing energy consumption in industry : A revised method," Energy Economics, Elsevier, vol. 9(3), pages 145-148, July.
    22. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    23. Chang, Yuan & Ries, Robert J. & Wang, Yaowu, 2010. "The embodied energy and environmental emissions of construction projects in China: An economic input-output LCA model," Energy Policy, Elsevier, vol. 38(11), pages 6597-6603, November.
    24. Liang, Sai & Zhang, Tianzhu, 2011. "What is driving CO2 emissions in a typical manufacturing center of South China? The case of Jiangsu Province," Energy Policy, Elsevier, vol. 39(11), pages 7078-7083.
    25. Huang, Yun-Hsun & Wu, Jung-Hua, 2013. "Analyzing the driving forces behind CO2 emissions and reduction strategies for energy-intensive sectors in Taiwan, 1996–2006," Energy, Elsevier, vol. 57(C), pages 402-411.
    26. Zhu, Qin & Peng, Xizhe & Wu, Kaiya, 2012. "Calculation and decomposition of indirect carbon emissions from residential consumption in China based on the input–output model," Energy Policy, Elsevier, vol. 48(C), pages 618-626.
    27. Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
    28. Su, Bin & Ang, B.W., 2010. "Input-output analysis of CO2 emissions embodied in trade: The effects of spatial aggregation," Ecological Economics, Elsevier, vol. 70(1), pages 10-18, November.
    29. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:73:y:2017:i:c:p:85-94. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.