IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v37y2012i1p161-170.html
   My bibliography  Save this article

Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques

Author

Listed:
  • Tarancon, Miguel Angel
  • Del Río, Pablo

Abstract

The aim of this paper is to provide a critical overview of sensitivity analyses within input-output techniques applied to energy-related CO2 emissions. A classification of those applications is presented and their main advantages and disadvantages are discussed. It is argued that sensitivity analyses within input-output techniques are very relevant to obtain a “map” of hot-spots of the production system, i.e., to identify the transactions between sectors which lead to a large impact on the generation of energy-related CO2 emissions. Possible extensions of this approach are discussed.

Suggested Citation

  • Tarancon, Miguel Angel & Del Río, Pablo, 2012. "Assessing energy-related CO2 emissions with sensitivity analysis and input-output techniques," Energy, Elsevier, vol. 37(1), pages 161-170.
  • Handle: RePEc:eee:energy:v:37:y:2012:i:1:p:161-170
    DOI: 10.1016/j.energy.2011.07.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211004749
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guivarch, Céline & Hallegatte, Stéphane & Crassous, Renaud, 2009. "The resilience of the Indian economy to rising oil prices as a validation test for a global energy-environment-economy CGE model," Energy Policy, Elsevier, vol. 37(11), pages 4259-4266, November.
    2. Nässén, Jonas & Holmberg, John & Wadeskog, Anders & Nyman, Madeleine, 2007. "Direct and indirect energy use and carbon emissions in the production phase of buildings: An input–output analysis," Energy, Elsevier, vol. 32(9), pages 1593-1602.
    3. Lars Bohlin & Lars Widell, 2006. "Estimation of commodity-by-commodity input-output matrices," Economic Systems Research, Taylor & Francis Journals, vol. 18(2), pages 205-215.
    4. Parikh, Jyoti & Panda, Manoj & Ganesh-Kumar, A. & Singh, Vinay, 2009. "CO2 emissions structure of Indian economy," Energy, Elsevier, vol. 34(8), pages 1024-1031.
    5. Machado, Giovani & Schaeffer, Roberto & Worrell, Ernst, 2001. "Energy and carbon embodied in the international trade of Brazil: an input-output approach," Ecological Economics, Elsevier, vol. 39(3), pages 409-424, December.
    6. Chang, Yih F & Lin, Sue J, 1998. "Structural decomposition of industrial CO2 emission in Taiwan: an input-output approach," Energy Policy, Elsevier, vol. 26(1), pages 5-12, January.
    7. Miguel angel Tarancon & Fernando Callejas & Erik Dietzenbacher & Michael Lahr, 2008. "A Revision of the Tolerable Limits Approach: Searching for the Important Coefficients," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 75-95.
    8. Butnar, Isabela & Llop, Maria, 2007. "Composition of greenhouse gas emissions in Spain: An input-output analysis," Ecological Economics, Elsevier, vol. 61(2-3), pages 388-395, March.
    9. Ferng, Jiun-Jiun, 2003. "Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit," Ecological Economics, Elsevier, vol. 46(1), pages 121-141, August.
    10. Lenzen, Manfred, 1998. "Primary energy and greenhouse gases embodied in Australian final consumption: an input-output analysis," Energy Policy, Elsevier, vol. 26(6), pages 495-506, May.
    11. Chandrima Sikdar & Thijs ten Raa & Pierre Mohnen & Debesh Chakraborty, 2009. "Bilateral Trade between India and Bangladesh: A General Equilibrium Approach," World Scientific Book Chapters,in: Input–Output Economics: Theory And Applications Featuring Asian Economies, chapter 25, pages 487-518 World Scientific Publishing Co. Pte. Ltd..
    12. Gowdy, John M. & Miller, Jack L., 1991. "An input-output approach to energy efficiency in the U.S.A. and Japan (1960–1980)," Energy, Elsevier, vol. 16(6), pages 897-902.
    13. Llop, Maria, 2007. "Economic structure and pollution intensity within the environmental input-output framework," Energy Policy, Elsevier, vol. 35(6), pages 3410-3417, June.
    14. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    15. Thijs ten Raa & Amarendra Sahoo, 2009. "Competitive Pressure on the Indian Households: A General Equilibrium Approach," World Scientific Book Chapters,in: Input–Output Economics: Theory And Applications Featuring Asian Economies, chapter 26, pages 519-538 World Scientific Publishing Co. Pte. Ltd..
    16. Morilla, Carmen Rodriguez & Diaz-Salazar, Gaspar Llanes & Cardenete, M. Alejandro, 2007. "Economic and environmental efficiency using a social accounting matrix," Ecological Economics, Elsevier, vol. 60(4), pages 774-786, February.
    17. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2010. "The impact of household consumption patterns on emissions in Spain," Energy Economics, Elsevier, vol. 32(1), pages 176-185, January.
    18. Alcantara, Vicent & Duarte, Rosa, 2004. "Comparison of energy intensities in European Union countries. Results of a structural decomposition analysis," Energy Policy, Elsevier, vol. 32(2), pages 177-189, January.
    19. Hondo, Hiroki & Sakai, Shinsuke & Tanno, Shiro, 2002. "Sensitivity analysis of total CO2 emission intensities estimated using an input-output table," Applied Energy, Elsevier, vol. 72(3-4), pages 689-704, July.
    20. Ackerman, Frank & Ishikawa, Masanobu & Suga, Mikio, 2007. "The carbon content of Japan-US trade," Energy Policy, Elsevier, vol. 35(9), pages 4455-4462, September.
    21. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    22. McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2008. "The CO2 'trade balance' between Scotland and the rest of the UK: Performing a multi-region environmental input-output analysis with limited data," Ecological Economics, Elsevier, vol. 66(4), pages 662-673, July.
    23. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    24. Mette Wier, 1998. "Sources of Changes in Emissions from Energy: A Structural Decomposition Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 99-112.
    25. Li, You & Hewitt, C.N., 2008. "The effect of trade between China and the UK on national and global carbon dioxide emissions," Energy Policy, Elsevier, vol. 36(6), pages 1907-1914, June.
    26. Hartono, Djoni & Resosudarmo, Budy P., 2008. "The economy-wide impact of controlling energy consumption in Indonesia: An analysis using a Social Accounting Matrix framework," Energy Policy, Elsevier, vol. 36(4), pages 1404-1419, April.
    27. Naqvi, Farzana, 1998. "A computable general equilibrium model of energy, economy and equity interactions in Pakistan," Energy Economics, Elsevier, vol. 20(4), pages 347-373, September.
    28. Yuan, Chaoqing & Liu, Sifeng & Xie, Naiming, 2010. "The impact on chinese economic growth and energy consumption of the Global Financial Crisis: An input–output analysis," Energy, Elsevier, vol. 35(4), pages 1805-1812.
    29. Tarancón, Miguel Ángel & del Río, Pablo & Callejas, Fernando, 2011. "Determining the responsibility of manufacturing sectors regarding electricity consumption. The Spanish case," Energy, Elsevier, vol. 36(1), pages 46-52.
    30. Forsund, Finn R., 1985. "Input-output models, national economic models, and the environment," Handbook of Natural Resource and Energy Economics,in: A. V. Kneese† & J. L. Sweeney (ed.), Handbook of Natural Resource and Energy Economics, edition 1, volume 1, chapter 8, pages 325-341 Elsevier.
    31. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    32. Chung, Hyun-Sik & Rhee, Hae-Chun, 2001. "A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries," Energy, Elsevier, vol. 26(1), pages 15-30.
    33. Zhongxiang Zhang, 1998. "Macro-economic and Sectoral Effects of Carbon Taxes: A General Equilibrium Analysis for China," Economic Systems Research, Taylor & Francis Journals, vol. 10(2), pages 135-159.
    34. James, D. E. & deL. Musgrove, A. R. & Stocks, K. J., 1986. "Integration of an economic input-output model and a linear programming technological model for energy systems analysis," Energy Economics, Elsevier, vol. 8(2), pages 99-112, April.
    35. Roca, Jordi & Serrano, Monica, 2007. "Income growth and atmospheric pollution in Spain: An input-output approach," Ecological Economics, Elsevier, vol. 63(1), pages 230-242, June.
    36. Hermann Schnabl, 2003. "The ECA-method for Identifying Sensitive Reactions within an IO Context," Economic Systems Research, Taylor & Francis Journals, vol. 15(4), pages 495-504.
    37. Rose, A. & Chen, C. Y., 1991. "Sources of change in energy use in the U.S. economy, 1972-1982 : A structural decomposition analysis," Resources and Energy, Elsevier, vol. 13(1), pages 1-21, April.
    38. Mongelli, I. & Tassielli, G. & Notarnicola, B., 2006. "Global warming agreements, international trade and energy/carbon embodiments: an input-output approach to the Italian case," Energy Policy, Elsevier, vol. 34(1), pages 88-100, January.
    39. Hristu-Varsakelis, D. & Karagianni, S. & Pempetzoglou, M. & Sfetsos, A., 2010. "Optimizing production with energy and GHG emission constraints in Greece: An input-output analysis," Energy Policy, Elsevier, vol. 38(3), pages 1566-1577, March.
    40. Sanchez-Choliz, Julio & Duarte, Rosa & Mainar, Alfredo, 2007. "Environmental impact of household activity in Spain," Ecological Economics, Elsevier, vol. 62(2), pages 308-318, April.
    41. Blanca Gallego & Manfred Lenzen, 2005. "A consistent input-output formulation of shared producer and consumer responsibility," Economic Systems Research, Taylor & Francis Journals, vol. 17(4), pages 365-391.
    42. Anders Hammer Strømman & Faye Duchin, 2006. "A world trade model with bilateral trade based on comparative advantage," Economic Systems Research, Taylor & Francis Journals, vol. 18(3), pages 281-297.
    43. Sanchez-Choliz, Julio & Duarte, Rosa, 2004. "CO2 emissions embodied in international trade: evidence for Spain," Energy Policy, Elsevier, vol. 32(18), pages 1999-2005, December.
    44. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    45. Llop, Maria & Pié, Laia, 2008. "Input-output analysis of alternative policies implemented on the energy activities: An application for Catalonia," Energy Policy, Elsevier, vol. 36(5), pages 1642-1648, May.
    46. Lu, Chuanyi & Zhang, Xiliang & He, Jiankun, 2010. "A CGE analysis to study the impacts of energy investment on economic growth and carbon dioxide emission: A case of Shaanxi Province in western China," Energy, Elsevier, vol. 35(11), pages 4319-4327.
    47. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    48. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
    49. Kenneth Reinert & David Roland-Holst, 2001. "Industrial Pollution Linkages in North America: A Linear Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 197-208.
    50. Chen, G.Q. & Zhang, Bo, 2010. "Greenhouse gas emissions in China 2007: Inventory and input-output analysis," Energy Policy, Elsevier, vol. 38(10), pages 6180-6193, October.
    51. Allan, Grant & Hanley, Nick & McGregor, Peter & Swales, Kim & Turner, Karen, 2007. "The impact of increased efficiency in the industrial use of energy: A computable general equilibrium analysis for the United Kingdom," Energy Economics, Elsevier, vol. 29(4), pages 779-798, July.
    52. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    53. Munksgaard, Jesper & Pedersen, Klaus Alsted, 2001. "CO2 accounts for open economies: producer or consumer responsibility?," Energy Policy, Elsevier, vol. 29(4), pages 327-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Lian-Biao & Peng, Pan & Zhu, Lei, 2015. "Embodied energy, export policy adjustment and China's sustainable development: A multi-regional input-output analysis," Energy, Elsevier, vol. 82(C), pages 457-467.
    2. repec:eee:eneeco:v:72:y:2018:i:c:p:451-461 is not listed on IDEAS
    3. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    4. repec:eee:enepol:v:114:y:2018:i:c:p:262-273 is not listed on IDEAS
    5. Bowen Xiao & Dongxiao Niu & Xiaodan Guo, 2016. "The Driving Forces of Changes in CO 2 Emissions in China: A Structural Decomposition Analysis," Energies, MDPI, Open Access Journal, vol. 9(4), pages 1-17, March.
    6. repec:gam:jeners:v:9:y:2016:i:4:p:259:d:67071 is not listed on IDEAS
    7. Jeon, Jun-Seo & Lee, Seung-Rae & Pasquinelli, Lisa & Fabricius, Ida Lykke, 2015. "Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well," Energy, Elsevier, vol. 90(P2), pages 1349-1359.
    8. Olga Gavrilova & Raivo Vilu, 2015. "Estonia's Energy-related Greenhouse Gas Emissions in 1995-2011: A Structural Decomposition Analysis," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 67-84, February.
    9. Cortés-Borda, D. & Guillén-Gosálbez, G. & Jiménez, L., 2015. "Solar energy embodied in international trade of goods and services: A multi-regional input–output approach," Energy, Elsevier, vol. 82(C), pages 578-588.
    10. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.

    More about this item

    Keywords

    Sensitivity analyses; Input-output techniques; CO2 emissions;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:37:y:2012:i:1:p:161-170. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.journals.elsevier.com/energy .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.