IDEAS home Printed from https://ideas.repec.org/p/zbw/ifwkwp/1473.html
   My bibliography  Save this paper

Integrating bioenergy into computable general equilibrium models: a survey

Author

Listed:
  • Kretschmer, Bettina
  • Peterson, Sonja

Abstract

In the past years biofuels have received increased attention since they were believed to contribute to rural development, energy security and to fight global warming. It became also clear, though, that bioenergy cannot be evaluated independently of the rest of the economy and that national and international feedback effects are important. Computable general equilibrium (CGE) models have been widely employed in order to study the effects of international climate policies. The main characteristic of these models is their encompassing scope: Global models cover the whole world economy disaggregated into regions and countries as well as diverse sectors of economic activity. Such a modelling framework unveils direct and indirect feedback effects of certain policies or shocks across sectors and countries. CGE models are thus well suited for the study of bioenergy/biofuel policies. One can currently find various approaches in the literature of incorporating bioenergy into a CGE framework. This paper intends to give an overview of existing approaches and to critically assess their respective power. Grouping different approaches into categories and highlighting their advantages and disadvantages is important for giving a structure to this rather recent and rapidly growing research area and to provide a guidepost for future work.

Suggested Citation

  • Kretschmer, Bettina & Peterson, Sonja, 2008. "Integrating bioenergy into computable general equilibrium models: a survey," Kiel Working Papers 1473, Kiel Institute for the World Economy (IfW Kiel).
  • Handle: RePEc:zbw:ifwkwp:1473
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/24868/1/588533149.PDF
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    2. Reilly, John & Paltsev, Sergey, 2007. "Biomass Energy and Competition for Land," Conference papers 331570, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    3. Roman Keeney & Thomas W. Hertel, 2009. "The Indirect Land Use Impacts of United States Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 895-909.
    4. Edwin Van Der Werf & Sonja Peterson, 2009. "Modeling linkages between climate policy and land use: an overview," Agricultural Economics, International Association of Agricultural Economists, vol. 40(5), pages 507-517, September.
    5. Reilly, John & Paltsev, Sergey, 2008. "Biomass Energy and Competition for Land," GTAP Working Papers 2607, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    6. Gurgel Angelo & Reilly John M & Paltsev Sergey, 2007. "Potential Land Use Implications of a Global Biofuels Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-36, December.
    7. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. repec:fpr:2020br:14(3 is not listed on IDEAS
    9. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 35(2), pages 117-141, June.
    10. Keeney, Roman & Hertel, Thomas, 2008. "The Indirect Land Use Impacts of U.S. Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," GTAP Working Papers 2810, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    11. Taheripour, Farzad & Hertel, Thomas W. & Tyner, Wallace E. & Beckman, Jayson F. & Birur, Dileep K., 2008. "Biofuels and their By-Products: Global Economic and Environmental Implications," Conference papers 331685, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Ronneberger, Kerstin & Berrittella, Maria & Boselle, Francesco & Tol, Richard, 2008. "KLUM@GTAP: Spatially-Explicit, Biophysical Land Use in a Computable General Equilibrium Model," GTAP Working Papers 2611, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    13. Birur, Dileep & Hertel, Thomas & Tyner, Wally, 2008. "Impact of Biofuel Production on World Agricultural Markets: A Computable General Equilibrium Analysis," GTAP Working Papers 2413, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    14. Taheripour, Farzad & Dileep Birur & Thomas Hertel & Wally Tyner, 2007. "Introducing Liquid Biofuels into the GTAP Data Base," GTAP Research Memoranda 2534, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    15. Ronald W. Jones, 2018. "The Structure of Simple General Equilibrium Models," World Scientific Book Chapters, in: International Trade Theory and Competitive Models Features, Values, and Criticisms, chapter 4, pages 61-84, World Scientific Publishing Co. Pte. Ltd..
    16. Taheripour, Farzad & Hertel, Thomas W. & Tyner, Wallace E., 2009. "Implications of the Biofuels Boom for the Global Livestock Industry: A Computable General Equilibrium Analysis," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49330, Agricultural and Applied Economics Association.
    17. Monfreda, Chad & Ramankutty, Navin & Hertel, Thomas, 2008. "Global Agricultural Land Use Data for Climate Change Analysis," GTAP Working Papers 2601, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    18. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Keeney, Roman & Hertel, Thomas, 2008. "The Indirect Land Use Impacts of U.S. Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," GTAP Working Papers 2810, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    20. Springer, Urs, 2003. "The market for tradable GHG permits under the Kyoto Protocol: a survey of model studies," Energy Economics, Elsevier, vol. 25(5), pages 527-551, September.
    21. Lee, Huey-Lin & Hertel, Thomas & Rose, Steven & Avetisyan, Misak, 2008. "An Integrated Global Land Use Data Base for CGE Analysis of Climate Policy Options," GTAP Working Papers 2603, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    22. Peter B. Dixon & Stefan Osborne & Maureen T. Rimmer, 2007. "The Economy-Wide Effects in the United States of Replacing Crude Petroleum with Biomass," Energy & Environment, , vol. 18(6), pages 709-722, November.
    23. Thomas W. Hertel & Marinos E. Tsigas, 1988. "Tax Policy and U.S. Agriculture: A General Equilibrium Analysis," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 70(2), pages 289-302.
    24. Hertel, Thomas & Rose, Steven & Tol, Richard, 2008. "Land Use in Computable General Equilibrium Models: An Overview," GTAP Working Papers 2595, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    25. Oecd, 2006. "Agricultural Market Impacts of Future Growth in the Production of Biofuels," OECD Papers, OECD Publishing, vol. 6(1), pages 1-57.
    26. von Braun, Joachim, 2007. "The world food situation: New driving forces and required actions," Food policy reports 18, International Food Policy Research Institute (IFPRI).
    27. Rosegrant, Mark W. & Msangi, Siwa & Sulser, Timothy B. & Valmonte-Santos, Rowena, 2006. "Biofuels and the global food balance: bioenergy and agriculture promises and challenges," 2020 vision briefs 14(3), International Food Policy Research Institute (IFPRI).
    28. Kretschmer, Bettina & Peterson, Sonja & Ignaciuk, Adriana M., 2008. "Integrating biofuels into the DART model," Kiel Working Papers 1472, Kiel Institute for the World Economy (IfW Kiel).
    29. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    30. Koizumi Tatsuji & Ohga Keiji, 2007. "Biofuels Policies in Asian Countries: Impact of the Expanded Biofuels Programs on World Agricultural Markets," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-22, December.
    31. Bruce McCarl & Darius Adams & Ralph Alig & John Chmelik, 2000. "Competitiveness of biomass‐fueled electrical power plants," Annals of Operations Research, Springer, vol. 94(1), pages 37-55, January.
    32. Gerber, Nicolas & Van Eckert, Manfred & Breuer, Thomas, 2008. "The Impacts of Biofuel Production on Food Prices: a review," Discussion Papers 48193, University of Bonn, Center for Development Research (ZEF).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    2. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    3. Vitezslav Pisa & Jan Bruha & Vitezslav Pisa, 2011. "Dynamics of the Commodity Prices and Quantities: An Analysis using a Dynamic Multiregional CGE Model," EcoMod2011 2889, EcoMod.
    4. Wianwiwat, Suthin & Asafu-Adjaye, John, 2013. "Is there a role for biofuels in promoting energy self sufficiency and security? A CGE analysis of biofuel policy in Thailand," Energy Policy, Elsevier, vol. 55(C), pages 543-555.
    5. Elizondo, Alejandra & Boyd, Roy, 2017. "Economic impact of ethanol promotion in Mexico: A general equilibrium analysis," Energy Policy, Elsevier, vol. 101(C), pages 293-301.
    6. María Blanco & Marcel Adenäuer & Shailesh Shrestha & Arno Becker, 2012. "Methodology to assess EU Biofuel Policies: The CAPRI Approach," JRC Research Reports JRC80037, Joint Research Centre (Seville site).
    7. Bouët, Antoine & Dimaranan, Betina V. & Valin, Hugo, 2010. "Modeling the global trade and environmental impacts of biofuel policies," IFPRI discussion papers 1018, International Food Policy Research Institute (IFPRI).
    8. Banse, M. & Sorda, G., 2010. "Impact of Different Biofuel Policy Options on Agricultural Production and Land Use in Germany," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 45, March.
    9. Kolasa, Marcin, 2014. "Real convergence and its illusions," Economic Modelling, Elsevier, vol. 37(C), pages 79-88.
    10. Hertel, Thomas, 2013. "Global Applied General Equilibrium Analysis Using the Global Trade Analysis Project Framework," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 815-876, Elsevier.
    11. Thierry Brunelle & Patrice Dumas, 2012. "Can Numerical Models Estimate Indirect Land-use Change?," Working Papers 2012.65, Fondazione Eni Enrico Mattei.
    12. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," Conference papers 331729, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Cororaton, Caesar B. & Timilsina, Govinda R. & Mevel, Simon, 2010. "Impacts Of Large Scale Expansion Of Biofuels On Global Poverty And Income Distribution," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91279, International Agricultural Trade Research Consortium.
    14. Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 645-663, September.
      • Ujjayant Chakravorty & Marie-Hélène Hubert & Linda Nøstbakken, 2009. "Fuel Versus Food," Post-Print halshs-01117673, HAL.
      • Chakravorty, Ujjayant & Hubert, Marie-Helene & Nostbakken, Linda, 2009. "Fuel versus Food," Working Papers 2009-20, University of Alberta, Department of Economics.
    15. Thomas Hertel & Jevgenijs Steinbuks & Uris Baldos, 2013. "Competition for land in the global bioeconomy," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 129-138, November.
    16. Sukati, Mphumuzi, 2014. "The South African Bio ethanol blend mandate and its implications on regional agricultural markets and welfare," MPRA Paper 57702, University Library of Munich, Germany.
    17. Sajedinia, Ehsanreza & Tyner, Wally, 2017. "Use of General Equilibrium Models in Evaluating Biofuels Policies," Conference papers 332885, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Castiblanco, Carmenza & Moreno, Alvaro & Etter, Andrés, 2015. "Impact of policies and subsidies in agribusiness: The case of oil palm and biofuels in Colombia," Energy Economics, Elsevier, vol. 49(C), pages 676-686.
    19. Ehsanreza Sajedinia & Wallace E. Tyner, 2021. "Use of General Equilibrium Models in Evaluating Biofuels Policies," World Scientific Book Chapters, in: Peter Dixon & Joseph Francois & Dominique van der Mensbrugghe (ed.), POLICY ANALYSIS AND MODELING OF THE GLOBAL ECONOMY A Festschrift Celebrating Thomas Hertel, chapter 14, pages 437-465, World Scientific Publishing Co. Pte. Ltd..
    20. Hertel, Thomas W., 2010. "The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm in the Making?," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 92639, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Biofuels; CGE model; climate policy;
    All these keywords.

    JEL classification:

    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:ifwkwp:1473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/iwkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.