IDEAS home Printed from
   My bibliography  Save this article

Competition for land in the global bioeconomy


  • Thomas Hertel
  • Jevgenijs Steinbuks
  • Uris Baldos


The global land use implications of biofuel expansion have received considerable attention in the literature over the past decade. Model-based estimates of the emissions from cropland expansion have been used to assess the environmental impacts of biofuel policies. And integrated assessment models have estimated the potential for biofuels to contribute to greenhouse gas abatement over the coming century. All of these studies feature, explicitly or implicitly, competition between biofuel feed stocks and other land uses. However, the economic mechanisms governing this competition, as well as the contribution of biofuels to global land use change, have not received the close scrutiny that they deserve. The purpose of this paper is to offer a deeper look at these factors. We begin with a comparative static analysis which assesses the impact of exogenously specified forecasts of biofuel expansion over the 2006-2035 period. Global land use change is decomposed according to the three key margins of economic response: extensive supply, intensive supply, and demand. Under the International Energy Agency’s "New Policies" scenario, biofuels account for nearly one-fifth of global land use change over the 2006-2035 period. The paper also offers a comparative dynamic analysis which determines the optimal path for first and second generation biofuels over the course of the entire 21st century. In the absence of GHG regulation, the welfare-maximizing path for global land use allocates 170 Mha to biofuel feed stocks by 2100, with the associated biofuels accounting for about 30% of global liquid fuel consumption. This area expansion is somewhat diminished by expected climate change impacts on agriculture, while it is significantly increased by a moderately aggressive GHG emissions target and by advances in conversion efficiency of second generation biofuels.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Thomas Hertel & Jevgenijs Steinbuks & Uris Baldos, 2013. "Competition for land in the global bioeconomy," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 129-138, November.
  • Handle: RePEc:bla:agecon:v:44:y:2013:i:s1:p:129-138

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Jacinto F. Fabiosa & John C. Beghin & Fengxia Dong & JAmani Elobeid & Simla Tokgoz & Tun-Hsiang Yu, 2010. "Land Allocation Effects of the Global Ethanol Surge: Predictions from the International FAPRI Model," Land Economics, University of Wisconsin Press, vol. 86(4), pages 687-706.
    2. Thaeripour, Farzad & Hertel, Thomas W. & Tyner, Wallace E. & Beckman, Jayson F. & Birur, Dileep K., 2008. "Biofuels and their By-Products: Global Economic and Environmental Implications," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6452, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    3. Simla Tokgoz & Amani Elobeid & Jacinto F. Fabiosa & Dermot J. Hayes & Bruce A. Babcock & Tun-Hsiang (Edward) Yu & Fengxia Dong & Chad E. Hart & John C. Beghin, 2007. "Emerging Biofuels: Outlook of Effects on U.S. Grain, Oilseed, and Livestock Markets," Food and Agricultural Policy Research Institute (FAPRI) Publications 07-sr101, Food and Agricultural Policy Research Institute (FAPRI) at Iowa State University.
    4. Seale, James & Regmi, Anita & Bernstein, Jason, 2003. "International Evidence on Food Consumption Patterns," Technical Bulletins 184321, United States Department of Agriculture, Economic Research Service.
    5. Dicks, Michael R. & Campiche, Jody L. & Torre Ugarte, Daniel de la & Hellwinckel, Chad M. & Bryant, Henry L. & Richardson, James W., 2009. "Land Use Implications of Expanding Biofuel Demand," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 41(02), August.
    6. Muhammad, Andrew & Seale, James L. & Meade, Birgit Gisela Saager & Regmi, Anita, 2011. "International Evidence on Food Consumption Patterns: An Update Using 2005 International Comparison Program Data," Technical Bulletins 184306, United States Department of Agriculture, Economic Research Service.
    7. Nelson B. Villoria & Thomas W. Hertel, 2011. "Geography Matters: International Trade Patterns and the Indirect Land Use Effects of Biofuels," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(4), pages 919-935.
    8. Banse, Martin & van Meijl, Hans & Tabeau, Andrzej A. & Woltjer, Geert B., 2008. "Impact of EU Biofuel Policies on World Agricultural and Food Markets," 107th Seminar, January 30-February 1, 2008, Sevilla, Spain 6476, European Association of Agricultural Economists.
    9. Rose, Steven K. & Ahammad, Helal & Eickhout, Bas & Fisher, Brian & Kurosawa, Atsushi & Rao, Shilpa & Riahi, Keywan & van Vuuren, Detlef P., 2012. "Land-based mitigation in climate stabilization," Energy Economics, Elsevier, vol. 34(1), pages 365-380.
    10. Keeney, Roman & Hertel, Thomas, 2008. "The Indirect Land Use Impacts of U.S. Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," GTAP Working Papers 2810, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    11. repec:eee:ecomod:v:221:y:2010:i:18:p:2188-2196 is not listed on IDEAS
    12. Gurgel Angelo & Reilly John M & Paltsev Sergey, 2007. "Potential Land Use Implications of a Global Biofuels Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 5(2), pages 1-36, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Vorotnikova, Ekaterina & Seale, James L, 2014. "The Effect of Energy Policy Act (EPA-2005) on Agricultural Land Allocation Dynamics in the United States," 2014 Annual Meeting, February 1-4, 2014, Dallas, Texas 162553, Southern Agricultural Economics Association.
    2. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    3. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    4. Claudia Ringler & Dirk Willenbockel & Nicostrato Perez & Mark Rosegrant & Tingju Zhu & Nathanial Matthews, 2016. "Global linkages among energy, food and water: an economic assessment," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 6(1), pages 161-171, March.

    More about this item

    JEL classification:

    • Q11 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Aggregate Supply and Demand Analysis; Prices
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:44:y:2013:i:s1:p:129-138. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.