IDEAS home Printed from https://ideas.repec.org/a/ags/joaaec/53091.html
   My bibliography  Save this article

Land Use Implications of Expanding Biofuel Demand

Author

Listed:
  • Dicks, Michael R.
  • Campiche, Jody L.
  • Torre Ugarte, Daniel de la
  • Hellwinckel, Chad M.
  • Bryant, Henry L.
  • Richardson, James W.

Abstract

The Renewable Fuel Standard mandates in the Energy Independence and Security Act of 2007 will require 36 billion gallons of ethanol to be produced in 2022. The mandates require that 16 of the 36 billion gallons must be produced from cellulosic feedstocks. The potential land use implications resulting from these mandates were examined using two methods, the POLYSYS model and a general equilibrium model. Results of the POLYSYS analysis indicated that 72.1 million tons of corn stover, 23.5 million tons of wheat straw, and 24.7 million acres would be used to produce 109 million tons of switchgrass in 2025 to meet the mandate. Results of the CGE analysis indicated that 10.9 billion bushels of corn grain, 71 million tons of corn stover, and 56,200 tons of switchgrass is needed to meet the mandate.

Suggested Citation

  • Dicks, Michael R. & Campiche, Jody L. & Torre Ugarte, Daniel de la & Hellwinckel, Chad M. & Bryant, Henry L. & Richardson, James W., 2009. "Land Use Implications of Expanding Biofuel Demand," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 41(2), August.
  • Handle: RePEc:ags:joaaec:53091
    DOI: 10.22004/ag.econ.53091
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/53091/files/jaaeip9.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.53091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2011. "Farmers’ Willingness to Grow Switchgrass as a Cellulosic Bioenergy Crop: A Stated Choice Approach," 2011 Annual Meeting, June 29-July 1, 2011, Banff, Alberta,Canada 109776, Western Agricultural Economics Association.
    2. Murnaghan, Kitty, 2017. "A comprehensive evaluation of the EU's biofuel policy: From biofuels to agrofuels," IPE Working Papers 81/2017, Berlin School of Economics and Law, Institute for International Political Economy (IPE).
    3. Galik, Christopher S., 2015. "Exploring the determinants of emerging bioenergy market participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 107-116.
    4. Christian Langpap & JunJie Wu, 2011. "Potential Environmental Impacts of Increased Reliance on Corn-Based Bioenergy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(2), pages 147-171, June.
    5. Hoekman, S. Kent & Broch, Amber, 2018. "Environmental implications of higher ethanol production and use in the U.S.: A literature review. Part II – Biodiversity, land use change, GHG emissions, and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3159-3177.
    6. Thomas Hertel & Jevgenijs Steinbuks & Uris Baldos, 2013. "Competition for land in the global bioeconomy," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 129-138, November.
    7. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    8. Affuso, Ermanno & Hite, Diane, 2013. "A model for sustainable land use in biofuel production: An application to the state of Alabama," Energy Economics, Elsevier, vol. 37(C), pages 29-39.
    9. Gorjian, Shiva & Zadeh, Babak Nemat & Eltrop, Ludger & Shamshiri, Redmond R. & Amanlou, Yasaman, 2019. "Solar photovoltaic power generation in Iran: Development, policies, and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 110-123.
    10. U. Martin Persson, 2015. "The impact of biofuel demand on agricultural commodity prices: a systematic review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 4(5), pages 410-428, September.
    11. Langholtz, Matthew & Graham, Robin & Eaton, Laurence & Perlack, Robert & Hellwinkel, Chad & De La Torre Ugarte, Daniel G., 2012. "Price projections of feedstocks for biofuels and biopower in the U.S," Energy Policy, Elsevier, vol. 41(C), pages 484-493.
    12. Aklesso Egbendewe-Mondzozo & Scott M. Swinton & Shujiang Kang & Wilfred M. Post & Julian C. Binfield & Wyatt Thompson, 2015. "Bioenergy Supply and Environmental Impacts on Cropland: Insights from Multi-market Forecasts in a Great Lakes Subregional Bioeconomic Model," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 37(4), pages 602-618.
    13. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2012. "Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium," Energy Economics, Elsevier, vol. 34(5), pages 1623-1633.
    14. Bai, Yun & Ouyang, Yanfeng & Pang, Jong-Shi, 2016. "Enhanced models and improved solution for competitive biofuel supply chain design under land use constraints," European Journal of Operational Research, Elsevier, vol. 249(1), pages 281-297.
    15. Fewell, Jason E. & Bergtold, Jason S. & Williams, Jeffery R., 2016. "Farmers' willingness to contract switchgrass as a cellulosic bioenergy crop in Kansas," Energy Economics, Elsevier, vol. 55(C), pages 292-302.
    16. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel economics in a setting of multiple objectives and unintended consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4320-4333.
    17. Okwo, Adaora & Thomas, Valerie M., 2014. "Biomass feedstock contracts: Role of land quality and yield variability in near term feasibility," Energy Economics, Elsevier, vol. 42(C), pages 67-80.

    More about this item

    Keywords

    Crop Production/Industries; Demand and Price Analysis; Environmental Economics and Policy; Land Economics/Use; Resource /Energy Economics and Policy;
    All these keywords.

    JEL classification:

    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:joaaec:53091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/saeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.