IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i18p2188-2196.html
   My bibliography  Save this article

Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade

Author

Listed:
  • Lotze-Campen, Hermann
  • Popp, Alexander
  • Beringer, Tim
  • Müller, Christoph
  • Bondeau, Alberte
  • Rost, Stefanie
  • Lucht, Wolfgang

Abstract

Increased future demands for food, fibre and fuels from biomass can only be met if the available land and water resources on a global scale are used and managed as efficiently as possible. The main routes for making the global agricultural system more productive are through intensification and technological change on currently used agricultural land, land expansion into currently non-agricultural areas, and international trade in agricultural commodities and processed goods. In order to analyse the trade-offs and synergies between these options, we present a global bio-economic modelling approach with a special focus on spatially explicit land and water constraints as well as technological change in agricultural production. For a global bioenergy demand scenario reaching 100ExaJoule (EJ) until 2055 we derive a required rate of productivity increase on agricultural land between 1.2 and 1.4 percent per year under different land allocation options. A very high pressure for yield increase occurs in Sub-Saharan Africa and the Middle East, even without additional bioenergy demand. Moreover, we analyse the implicit values (shadow prices) of limited water resources. The shadow prices for bioenergy are provided as a metric for assessing the trade-offs between different land allocation options and as a link between the agricultural and energy sector.

Suggested Citation

  • Lotze-Campen, Hermann & Popp, Alexander & Beringer, Tim & Müller, Christoph & Bondeau, Alberte & Rost, Stefanie & Lucht, Wolfgang, 2010. "Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade," Ecological Modelling, Elsevier, vol. 221(18), pages 2188-2196.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:18:p:2188-2196
    DOI: 10.1016/j.ecolmodel.2009.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009006395
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    2. Wirsenius, Stefan, 2003. "Efficiencies and biomass appropriation of food commodities on global and regional levels," Agricultural Systems, Elsevier, vol. 77(3), pages 219-255, September.
    3. Lee, Huey-Lin & Thomas Hertel & Brent Sohngen & Navin Ramankutty, 2005. "Towards An Integrated Land Use Database for Assessing the Potential for Greenhouse Gas Mitigation," GTAP Technical Papers 1900, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schmitz, Christoph & Lotze-Campen, Hermann, 2011. "A Spatial Mathematical Model Analysis of the Linkage between Agricultural Trade and Deforestation," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 115993, European Association of Agricultural Economists.
    2. Maryia Mandryk & Jonathan Doelman & Elke Stehfest, 2015. "Assessment of global land availability: land supply for agriculture," FOODSECURE Technical papers 7, LEI Wageningen UR.
    3. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    4. Helin, Janne & Weikard, Hans-Peter, 2019. "A model for estimating phosphorus requirements of world food production," Agricultural Systems, Elsevier, vol. 176(C).
    5. Massigoge, Ignacio & Carcedo, Ana & de Borja Reis, Andre Froes & Mitchell, Clay & Day, Scott & Oliverio, Joaquin & Truong, Sandra H. & McCormick, Ryan F. & Rotundo, Jose & Lira, Sara & Ciampitti, Igna, 2023. "Exploring avenues for agricultural intensification: A case study for maize-soybean in the Southern US region," Agricultural Systems, Elsevier, vol. 204(C).
    6. Gabriela Ileana Iacobuţă & Niklas Höhne & Heleen Laura van Soest & Rik Leemans, 2021. "Transitioning to Low-Carbon Economies under the 2030 Agenda: Minimizing Trade-Offs and Enhancing Co-Benefits of Climate-Change Action for the SDGs," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    7. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    8. Rega, Carlo & Helming, John & Paracchini, Maria Luisa, 2019. "Environmentalism and localism in agricultural and land-use policies can maintain food production while supporting biodiversity. Findings from simulations of contrasting scenarios in the EU," Land Use Policy, Elsevier, vol. 87(C).
    9. Thomas Hertel & Jevgenijs Steinbuks & Uris Baldos, 2013. "Competition for land in the global bioeconomy," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 129-138, November.
    10. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    11. van Wijk, Mark T., 2014. "From global economic modelling to household level analyses of food security and sustainability: How big is the gap and can we bridge it?," Food Policy, Elsevier, vol. 49(P2), pages 378-388.
    12. Kalt, Gerald & Mayer, Andreas & Haberl, Helmut & Kaufmann, Lisa & Lauk, Christian & Matej, Sarah & Röös, Elin & Theurl, Michaela C. & Erb, Karl-Heinz, 2021. "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0," Ecological Modelling, Elsevier, vol. 459(C).
    13. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2012. "Macroanalysis of the economic and environmental impacts of a 2005–2025 European Union bioenergy policy using the GTAP model and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1180-1192.
    14. David Klein & Gunnar Luderer & Elmar Kriegler & Jessica Strefler & Nico Bauer & Marian Leimbach & Alexander Popp & Jan Dietrich & Florian Humpenöder & Hermann Lotze-Campen & Ottmar Edenhofer, 2014. "The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE," Climatic Change, Springer, vol. 123(3), pages 705-718, April.
    15. Wang, Xiaoxi & Dietrich, Jan P. & Lotze-Campen, Hermann & Biewald, Anne & Stevanović, Miodrag & Bodirsky, Benjamin L. & Brümmer, Bernhard & Popp, Alexander, 2020. "Beyond land-use intensity: Assessing future global crop productivity growth under different socioeconomic pathways," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    16. Bonsch, Markus & Dietrich, Jan Philipp & Lotze-Campen, Hermann & Alexanger Popp and & Stevanovic, Miodrag, 2013. "Validation of land use models," Conference papers 330164, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    17. Yigit Kazancoglu & Cisem Lafci & Anil Kumar & Sunil Luthra & Jose Arturo Garza‐Reyes & Yalcin Berberoglu, 2024. "The role of agri‐food 4.0 in climate‐smart farming for controlling climate change‐related risks: A business perspective analysis," Business Strategy and the Environment, Wiley Blackwell, vol. 33(4), pages 2788-2802, May.
    18. Meiyappan, Prasanth & Dalton, Michael & O’Neill, Brian C. & Jain, Atul K., 2014. "Spatial modeling of agricultural land use change at global scale," Ecological Modelling, Elsevier, vol. 291(C), pages 152-174.
    19. Servaas Storm, 2011. "Forum 2011," Development and Change, International Institute of Social Studies, vol. 42(1), pages 399-418, January.
    20. Frieder Graef & Götz Uckert & Jana Schindler & Hannes Jochen König & Hadijah A. Mbwana & Anja Fasse & Lutengano Mwinuka & Henry Mahoo & Laurent N. Kaburire & Paul Saidia & Yusto Mugisha Yustas & Valer, 2017. "Expert-based ex-ante assessments of potential social, ecological, and economic impacts of upgrading strategies for improving food security in rural Tanzania using the ScalA-FS approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1255-1270, December.
    21. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.
    22. Dandres, Thomas & Gaudreault, Caroline & Seco, Pablo Tirado & Samson, Réjean, 2014. "Uncertainty management in a macro life cycle assessment of a 2005–2025 European bioenergy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 52-61.
    23. Bourne, Michael & Childs, Jack & Philippidis, George, 2011. "Reaping What Others Have Sown: Measuring the Impact of the Global Financial Crisis on Spanish Agriculture," Conference papers 332166, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    24. Graef, F. & Uckert, G., 2018. "Gender determines scientists’ sustainability assessments of food-securing upgrading strategies," Land Use Policy, Elsevier, vol. 79(C), pages 84-93.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    2. Onno Kuik, 2014. "REDD+ and international leakage via food and timber markets: a CGE analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(6), pages 641-655, August.
    3. Grant J. Allan, 2015. "The Regional Economic Impacts of Biofuels: A Review of Multisectoral Modelling Techniques and Evaluation of Applications," Regional Studies, Taylor & Francis Journals, vol. 49(4), pages 615-643, April.
    4. Dandres, Thomas & Gaudreault, Caroline & Tirado-Seco, Pablo & Samson, Réjean, 2012. "Macroanalysis of the economic and environmental impacts of a 2005–2025 European Union bioenergy policy using the GTAP model and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1180-1192.
    5. Mwaura, Francis, 2014. "Understanding dynamism of land ownership, use and patterns of allocation for the locals before inviting foreign investors: the Ugandan case," Conference papers 332543, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Panichelli, Luis & Gnansounou, Edgard, 2015. "Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 344-360.
    7. Pattanayak Subhrendu K. & Ross Martin T. & Depro Brooks M. & Bauch Simone C. & Timmins Christopher & Wendland Kelly J. & Alger Keith, 2009. "Climate Change and Conservation in Brazil: CGE Evaluation of Health and Wealth Impacts," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(2), pages 1-44, September.
    8. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    9. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    10. Lotze-Campen, Hermann & von Witzke, Harald & Noleppa, Steffen & Schwarz, Gerald, 2015. "Science for food, climate protection and welfare: An economic analysis of plant breeding research in Germany," Agricultural Systems, Elsevier, vol. 136(C), pages 79-84.
    11. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    12. Knut Einar Rosendahl & Jon Strand, 2011. "Carbon Leakage from the Clean Development Mechanism," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 27-50.
    13. Kriegler, Elmar, 2011. "Comment," Energy Economics, Elsevier, vol. 33(4), pages 594-596, July.
    14. Proost, Stef & Van Dender, Kurt, 2012. "Energy and environment challenges in the transport sector," Economics of Transportation, Elsevier, vol. 1(1), pages 77-87.
    15. repec:fpr:ifprib:2012ghienglish is not listed on IDEAS
    16. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    17. Baral, Nabin & Rabotyagov, Sergey, 2017. "How much are wood-based cellulosic biofuels worth in the Pacific Northwest? Ex-ante and ex-post analysis of local people's willingness to pay," Forest Policy and Economics, Elsevier, vol. 83(C), pages 99-106.
    18. Baka, Jennifer & Roland-Holst, David, 2009. "Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round," Energy Policy, Elsevier, vol. 37(7), pages 2505-2513, July.
    19. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2010. "Fossil energy and GHG saving potentials of pig farming in the EU," Energy Policy, Elsevier, vol. 38(5), pages 2561-2571, May.
    20. Sarah Jansen & William Foster & Gustavo Anríquez & Jorge Ortega, 2021. "Understanding Farm-Level Incentives within the Bioeconomy Framework: Prices, Product Quality, Losses, and Bio-Based Alternatives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    21. Shortall, O.K., 2013. "“Marginal land” for energy crops: Exploring definitions and embedded assumptions," Energy Policy, Elsevier, vol. 62(C), pages 19-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:18:p:2188-2196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.