IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i12p3254-d239325.html
   My bibliography  Save this article

The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007

Author

Listed:
  • Ling Yang

    () (School of Economics and Finance, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China)

  • Michael L. Lahr

    () (Edward J. Bloustein School of Planning and Public Policy, Rutgers The State University of New Jersey, New Jersey, NJ 08901, USA)

Abstract

Using three official multiregional input–output tables and carbon emission data, we decompose the change in carbon emission for eight regions of China between 1997 and 2007. We do so according to the following seven partial effects: (i) Changes in energy end-use structure, (ii) effect of energy intensity, (iii) the added value’s share of gross output, (iv) changes in sub-industry structure, (v) changes in the substitution of import for intermediate inputs, and changes in (vi) structure and (vii) level of final demand. We find energy intensity contributes most to CO 2 abatement throughout China, while other factors vary widely across the different regions. We suggest that governments consider regional disparity and CO 2 flows when formulating policies; structural change with an eye toward energy-savings and general efficiency improvements, like better insulated buildings, are among measures we deem effective.

Suggested Citation

  • Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, Open Access Journal, vol. 11(12), pages 1-18, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3254-:d:239325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/12/3254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/12/3254/
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Multiplicative structural decomposition analysis of energy and emission intensities: Some methodological issues," Energy, Elsevier, vol. 123(C), pages 47-63.
    3. Choi, Ki-Hong & Ang, B. W., 2003. "Decomposition of aggregate energy intensity changes in two measures: ratio and difference," Energy Economics, Elsevier, vol. 25(6), pages 615-624, November.
    4. Meng, Bo & Xue, Jinjun & Feng, Kuishuang & Guan, Dabo & Fu, Xue, 2013. "China’s inter-regional spillover of carbon emissions and domestic supply chains," Energy Policy, Elsevier, vol. 61(C), pages 1305-1321.
    5. Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
    6. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
    7. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    8. Hua Liao & Ce Wang & Zhi-Shuang Zhu & Xiao-Wei Ma, 2012. "Structural decomposition analysis on energy intensity changes at regional level," CEEP-BIT Working Papers 40, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    9. Haiyan Zhang & Michael L. Lahr, 2018. "Households’ Energy Consumption Change in China: A Multi-Regional Perspective," Sustainability, MDPI, Open Access Journal, vol. 10(7), pages 1-17, July.
    10. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    11. Shu Yang & Dingtao Zhao & Yanrui Wu & Jin Fan, 2013. "Regional Variation in Carbon Emissions and its Driving Forces in China: An Index Decomposition Analysis," Energy & Environment, , vol. 24(7-8), pages 1249-1270, December.
    12. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    13. de Boer, Paul, 2009. "Generalized Fisher index or Siegel-Shapley decomposition?," Energy Economics, Elsevier, vol. 31(5), pages 810-814, September.
    14. Su, Bin & Ang, B.W., 2015. "Multiplicative decomposition of aggregate carbon intensity change using input–output analysis," Applied Energy, Elsevier, vol. 154(C), pages 13-20.
    15. Su, Bin & Ang, B.W., 2017. "Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities," Energy Economics, Elsevier, vol. 65(C), pages 137-147.
    16. Richard F. Garbaccio & Mun S. Ho & Dale W. Jorgenson, 1999. "Why Has the Energy-Output Ratio Fallen in China?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 63-91.
    17. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    18. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Multi-regional input-output model for regional energy requirements and CO2 emissions in China," Energy Policy, Elsevier, vol. 35(3), pages 1685-1700, March.
    19. Kuishuang Feng & Yim Ling Siu & Dabo Guan & Klaus Hubacek, 2012. "Analyzing Drivers of Regional Carbon Dioxide Emissions for China," Journal of Industrial Ecology, Yale University, vol. 16(4), pages 600-611, August.
    20. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    21. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    22. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    23. Michael Lahr, 2001. "Reconciling Domestication Techniques, the Notion of Re-exports and Some Comments on Regional Accounting," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 165-179.
    24. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    China; structural decomposition analysis; regional carbon emissions; energy resources;

    JEL classification:

    • Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
    • Q0 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General
    • Q2 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation
    • Q3 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:12:p:3254-:d:239325. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team). General contact details of provider: https://www.mdpi.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.