IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v69y2009i1p145-154.html
   My bibliography  Save this article

Lifestyles, technology and CO2 emissions in China: A regional comparative analysis

Author

Listed:
  • Feng, Kuishuang
  • Hubacek, Klaus
  • Guan, Dabo

Abstract

With rapid economic development, higher income levels, urbanization and other socio-economic drivers, people's lifestyles in China have changed remarkably over the last 50Â years. This paper uses the IPAT model (where IÂ =Â Impact representing CO2 emissions, PÂ =Â Population, AÂ =Â Affluence, and TÂ =Â emission intensity) to analyze how these main drivers contributed to the growth of CO2 emissions over this time period. Affluence or lifestyle change has been variously recognized as one of the key factors contributing to CO2 emissions. Through comparative analysis of the development of five regions in China, we trace lifestyle changes since the foundation of the People's Republic of China (PRC) in 1949 until 2002. We find that household consumption across the five regions follows similar trajectories, driven by changes in income and the increasing availability of goods and services, although significant differences still exist between and within regions due to differential policies in China and different possibilities for social mobility. There are considerable differences between the southeast and northwest and between urban and rural areas. We also found that technological improvements have not been able to fully compensate for the increase of emissions due to population growth and increasing wealth, which is also in line with results from other studies. Finally, this paper emphasizes that developing countries such as China, which is home to 22% of the world population and a growing middle class, and which is on a fast track to modernization, need to ensure that people's lifestyles are changing towards more sustainable ways of living. China has been investing heavily in infrastructure and thus creating the emissions of tomorrow. Thus investing, for example, in public transport and low energy building today will help reduce emissions in the future and will support more sustainable lifestyles.

Suggested Citation

  • Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
  • Handle: RePEc:eee:ecolec:v:69:y:2009:i:1:p:145-154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921-8009(09)00316-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisher-Vanden, Karen & Jefferson, Gary H. & Liu, Hongmei & Tao, Quan, 2004. "What is driving China's decline in energy intensity?," Resource and Energy Economics, Elsevier, vol. 26(1), pages 77-97, March.
    2. Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
    3. Shujie Yao, 1999. "On the decomposition of Gini coefficients by population class and income source: a spreadsheet approach and application," Applied Economics, Taylor & Francis Journals, vol. 31(10), pages 1249-1264.
    4. Richard York & Eugene A. Rosa & Thomas Dietz, 2002. "Bridging Environmental Science with Environmental Policy: Plasticity of Population, Affluence, and Technology," Social Science Quarterly, Southwestern Social Science Association, vol. 83(1), pages 18-34.
    5. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    6. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    7. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    8. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    9. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    10. Lin, Jiang & Zhou, Nan & Levine, Mark & Fridley, David, 2008. "Taking out 1 billion tons of CO2: The magic of China's 11th Five-Year Plan?," Energy Policy, Elsevier, vol. 36(3), pages 954-970, March.
    11. Sinton, Jonathan E. & Levine, Mark D., 1994. "Changing energy intensity in Chinese industry : The relatively importance of structural shift and intensity change," Energy Policy, Elsevier, vol. 22(3), pages 239-255, March.
    12. Raskin, Paul D., 1995. "Methods for estimating the population contribution to environmental change," Ecological Economics, Elsevier, vol. 15(3), pages 225-233, December.
    13. Ang, B.W. & Liu, F.L. & Chung, Hyun-Sik, 2004. "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Elsevier, vol. 26(5), pages 757-763, September.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:69:y:2009:i:1:p:145-154. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.