IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0077699.html
   My bibliography  Save this article

Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model

Author

Listed:
  • Liang Chen
  • Zhifeng Yang
  • Bin Chen

Abstract

This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40–45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China’s low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance.

Suggested Citation

  • Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
  • Handle: RePEc:plo:pone00:0077699
    DOI: 10.1371/journal.pone.0077699
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0077699
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0077699&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0077699?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jia, Junsong & Deng, Hongbing & Duan, Jing & Zhao, Jingzhu, 2009. "Analysis of the major drivers of the ecological footprint using the STIRPAT model and the PLS method--A case study in Henan Province, China," Ecological Economics, Elsevier, vol. 68(11), pages 2818-2824, September.
    2. York, Richard & Rosa, Eugene A. & Dietz, Thomas, 2003. "STIRPAT, IPAT and ImPACT: analytic tools for unpacking the driving forces of environmental impacts," Ecological Economics, Elsevier, vol. 46(3), pages 351-365, October.
    3. Tao, Zaipu, 2010. "Scenarios of China's oil consumption per capita (OCPC) using a hybrid Factor Decomposition–System Dynamics (SD) simulation," Energy, Elsevier, vol. 35(1), pages 168-180.
    4. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    5. Raskin, Paul D., 1995. "Methods for estimating the population contribution to environmental change," Ecological Economics, Elsevier, vol. 15(3), pages 225-233, December.
    6. Ang, B.W. & Liu, F.L. & Chung, Hyun-Sik, 2004. "A generalized Fisher index approach to energy decomposition analysis," Energy Economics, Elsevier, vol. 26(5), pages 757-763, September.
    7. Richard York & Eugene A. Rosa & Thomas Dietz, 2002. "Bridging Environmental Science with Environmental Policy: Plasticity of Population, Affluence, and Technology," Social Science Quarterly, Southwestern Social Science Association, vol. 83(1), pages 18-34, March.
    8. Song, Malin & Wang, Shuhong & Yu, Huayin & Yang, Li & Wu, Jie, 2011. "To reduce energy consumption and to maintain rapid economic growth: Analysis of the condition in China based on expended IPAT model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5129-5134.
    9. Ang, B.W. & Liu, F.L., 2001. "A new energy decomposition method: perfect in decomposition and consistent in aggregation," Energy, Elsevier, vol. 26(6), pages 537-548.
    10. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    2. Chen, Kunlun & Wang, Xu & Li, Dan & Li, Zhaohua, 2015. "Driving force of the morphological change of the urban lake ecosystem: A case study of Wuhan, 1990–2013," Ecological Modelling, Elsevier, vol. 318(C), pages 204-209.
    3. Tao, Yu & Li, Feng & Liu, Xusheng & Zhao, Dan & Sun, Xiao & Xu, Lianfang, 2015. "Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China," Ecological Modelling, Elsevier, vol. 318(C), pages 210-216.
    4. Renquan Huang & Jing Tian, 2022. "Dynamic Scenario Analysis of Science and Technology Innovation to Support Chinese Cities in Achieving the “Double Carbon” Goal: A Case Study of Xi’an City," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
    5. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Research on the peak of CO2 emissions in the developing world: Current progress and future prospect," Applied Energy, Elsevier, vol. 235(C), pages 186-203.
    6. Tan, Xianchun & Dong, Lele & Chen, Dexue & Gu, Baihe & Zeng, Yuan, 2016. "China’s regional CO2 emissions reduction potential: A study of Chongqing city," Applied Energy, Elsevier, vol. 162(C), pages 1345-1354.
    7. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klaus Hubacek & Kuishuang Feng & Bin Chen, 2011. "Changing Lifestyles Towards a Low Carbon Economy: An IPAT Analysis for China," Energies, MDPI, vol. 5(1), pages 1-10, December.
    2. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    3. Wang, Mingwei & Che, Yue & Yang, Kai & Wang, Min & Xiong, Lijun & Huang, Yuchi, 2011. "A local-scale low-carbon plan based on the STIRPAT model and the scenario method: The case of Minhang District, Shanghai, China," Energy Policy, Elsevier, vol. 39(11), pages 6981-6990.
    4. Jaruwan Chontanawat, 2019. "Driving Forces of Energy-Related CO 2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries," Energies, MDPI, vol. 12(4), pages 1-23, February.
    5. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    6. Huijie Yan & Mateo Cordier & Takuro Uehara, 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications," Sustainability, MDPI, vol. 16(2), pages 1-18, January.
    7. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    8. Yu Liu & Hongwei Xiao & Ning Zhang, 2016. "Industrial Carbon Emissions of China’s Regions: A Spatial Econometric Analysis," Sustainability, MDPI, vol. 8(3), pages 1-14, February.
    9. Chen, Kunlun & Wang, Xu & Li, Dan & Li, Zhaohua, 2015. "Driving force of the morphological change of the urban lake ecosystem: A case study of Wuhan, 1990–2013," Ecological Modelling, Elsevier, vol. 318(C), pages 204-209.
    10. Puliafito, Salvador Enrique & Puliafito, José Luis & Grand, Mariana Conte, 2008. "Modeling population dynamics and economic growth as competing species: An application to CO2 global emissions," Ecological Economics, Elsevier, vol. 65(3), pages 602-615, April.
    11. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    12. Kiran Asif & Samina Sabir & Unbreen Qayyum, 2024. "Corruption, Political Instability, and Environmental Degradation in South Asia: a Comparative Analysis of Carbon Footprint and Ecological Footprint," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 4072-4096, March.
    13. Bo Li & Xuejing Liu & Zhenhong Li, 2015. "Using the STIRPAT model to explore the factors driving regional CO 2 emissions: a case of Tianjin, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1667-1685, April.
    14. Huijie Yan & Mateo Cordier & Takuro Uehara, 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications," ULB Institutional Repository 2013/371523, ULB -- Universite Libre de Bruxelles.
    15. Yuanyuan Gong & Deyong Song, 2015. "Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
    16. repec:awi:wpaper:0422 is not listed on IDEAS
    17. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    18. Huijie Yan & Mateo Cordier & Takuro Uehara, 2024. "Future Projections of Global Plastic Pollution: Scenario Analyses and Policy Implications," Post-Print hal-04396682, HAL.
    19. García García, Claudia & García García, Catalina & Salmerón Gómez, Román & García Pérez, José, 2017. "Regresión con variables ortogonales y regresión alzada en el modelo STIRPAT/The Regression with Orthogonal Variables and the Raise Regression in the STIRPAT Model," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 35, pages 717-734, Agosto.
    20. Kwon, Tae-Hyeong, 2005. "Decomposition of factors determining the trend of CO2 emissions from car travel in Great Britain (1970-2000)," Ecological Economics, Elsevier, vol. 53(2), pages 261-275, April.
    21. Chang, Chun-Ping & Dong, Minyi & Sui, Bo & Chu, Yin, 2019. "Driving forces of global carbon emissions: From time- and spatial-dynamic perspectives," Economic Modelling, Elsevier, vol. 77(C), pages 70-80.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0077699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.