IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i22p15039-d973446.html
   My bibliography  Save this article

Dynamic Scenario Analysis of Science and Technology Innovation to Support Chinese Cities in Achieving the “Double Carbon” Goal: A Case Study of Xi’an City

Author

Listed:
  • Renquan Huang

    (School of Economics and Finance, Xi’an International Studies University, Xi’an 710128, China
    FinTech Innovation Research Center, Xi’an International Studies University, Xi’an 710128, China)

  • Jing Tian

    (School of Economics and Finance, Xi’an International Studies University, Xi’an 710128, China
    FinTech Innovation Research Center, Xi’an International Studies University, Xi’an 710128, China)

Abstract

Since the Chinese government proclaimed the “double carbon” goal in 2020, carbon emissions reduction has become an important task for the Chinese government. Cities generate more than 60% of carbon emissions. There are many challenges in achieving the “double carbon” goal for the cities of China. Science and technology innovation (STI) provides a feasible path, and the mechanism of STI influencing carbon emissions is analyzed. The STI factors, economic factors, energy factors, and population factors are studied based on the generalized Divisia index method. According to the decomposing results, science and technology innovation investment is the most important increasing factor in carbon emissions, and technology innovation investment efficiency is the most important decreasing factor, respectively. Three scenarios are set up and simulated with Monte Carlo technology evaluating the city of Xi’an in China. Under the baseline development scenario, it cannot achieve the carbon peak goal, and the uncertainty of carbon emissions increases. Under the green development scenario, it will peak in 2051, with a 95% confidence interval of 6668.47–7756.90 × 10 4 tons. Under the technology breakthrough scenario, the lower and median boundaries of carbon emissions peak at 4703.94 × 10 4 tons and 4852.39 × 10 4 tons in 2026, and the upper boundary peaks at 5042.15 × 10 4 tons in 2030. According to the Environmental Kuznets Curve theory, it will peak between 2028 and 2029 with a GDP per capita of CNY 153,223.85. However, it will fail to achieve the carbon neutrality goal by 2060, and should rely on the national carbon trading market of China to achieve the goal with a trading volume of 2524.61–3007.01 × 10 4 tons.

Suggested Citation

  • Renquan Huang & Jing Tian, 2022. "Dynamic Scenario Analysis of Science and Technology Innovation to Support Chinese Cities in Achieving the “Double Carbon” Goal: A Case Study of Xi’an City," IJERPH, MDPI, vol. 19(22), pages 1-19, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15039-:d:973446
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/22/15039/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/22/15039/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chang, Hsuan-Yu & Wang, Wei & Yu, Jihai, 2021. "Revisiting the environmental Kuznets curve in China: A spatial dynamic panel data approach," Energy Economics, Elsevier, vol. 104(C).
    2. Obobisa, Emma Serwaa & Chen, Haibo & Mensah, Isaac Adjei, 2022. "The impact of green technological innovation and institutional quality on CO2 emissions in African countries," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    3. Belbute, José M. & Pereira, Alfredo M., 2020. "Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal," Energy Policy, Elsevier, vol. 144(C).
    4. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    5. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    6. Eghbali, Mohammad-Ali & Rasti-Barzoki, Morteza & Safarzadeh, Soroush, 2022. "A hybrid evolutionary game-theoretic and system dynamics approach for analysis of implementation strategies of green technological innovation under government intervention," Technology in Society, Elsevier, vol. 70(C).
    7. Liu, Yisheng & Yang, Meng & Cheng, Feiyu & Tian, Jinzhao & Du, Zhuoqun & Song, Pengbo, 2022. "Analysis of regional differences and decomposition of carbon emissions in China based on generalized divisia index method," Energy, Elsevier, vol. 256(C).
    8. Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shigetomi, Yosuke & Matsumoto, Ken'ichi & Ogawa, Yuki & Shiraki, Hiroto & Yamamoto, Yuki & Ochi, Yuki & Ehara, Tomoki, 2018. "Driving forces underlying sub-national carbon dioxide emissions within the household sector and implications for the Paris Agreement targets in Japan," Applied Energy, Elsevier, vol. 228(C), pages 2321-2332.
    2. Liu, Gengyuan & Hao, Yan & Zhou, Yun & Yang, Zhifeng & Zhang, Yan & Su, Meirong, 2016. "China's low-carbon industrial transformation assessment based on Logarithmic Mean Divisia Index model," Resources, Conservation & Recycling, Elsevier, vol. 108(C), pages 156-170.
    3. Viktor Koval & Viktoriia Khaustova & Stella Lippolis & Olha Ilyash & Tetiana Salashenko & Piotr Olczak, 2023. "Fundamental Shifts in the EU’s Electric Power Sector Development: LMDI Decomposition Analysis," Energies, MDPI, vol. 16(14), pages 1-22, July.
    4. Feng Dong & Jingyun Li & Yue-Jun Zhang & Ying Wang, 2018. "Drivers Analysis of CO 2 Emissions from the Perspective of Carbon Density: The Case of Shandong Province, China," IJERPH, MDPI, vol. 15(8), pages 1-24, August.
    5. Xiang, Xiwang & Ma, Minda & Ma, Xin & Chen, Liming & Cai, Weiguang & Feng, Wei & Ma, Zhili, 2022. "Historical decarbonization of global commercial building operations in the 21st century," Applied Energy, Elsevier, vol. 322(C).
    6. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    7. Shangjiu Wang & Shaohua Zhang & Liang Cheng, 2023. "Drivers and Decoupling Effects of PM 2.5 Emissions in China: An Application of the Generalized Divisia Index," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    8. Tan, Xianchun & Dong, Lele & Chen, Dexue & Gu, Baihe & Zeng, Yuan, 2016. "China’s regional CO2 emissions reduction potential: A study of Chongqing city," Applied Energy, Elsevier, vol. 162(C), pages 1345-1354.
    9. Chen, Qingjuan & Wang, Qunwei & Zhou, Dequn & Wang, Honggang, 2023. "Drivers and evolution of low-carbon development in China's transportation industry: An integrated analytical approach," Energy, Elsevier, vol. 262(PB).
    10. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    11. Junliang Yang & Haiyan Shan, 2019. "Identifying Driving Factors of Jiangsu’s Regional Sulfur Dioxide Emissions: A Generalized Divisia Index Method," IJERPH, MDPI, vol. 16(20), pages 1-20, October.
    12. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    13. Han Sun & Chao Huang & Shan Ni, 2022. "Driving factors of consumption-based PM2.5 emissions in China: an application of the generalized Divisia index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10209-10231, August.
    14. Wang, Yaxian & Zhao, Zhenli & Wang, Wenju & Streimikiene, Dalia & Balezentis, Tomas, 2023. "Interplay of multiple factors behind decarbonisation of thermal electricity generation: A novel decomposition model," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    15. Mohamad Taghvaee, Vahid & Hajiani, Parviz, 2015. "Environment, Energy, and Environmental Productivity of Energy: A Decomposition Analysis in China and the US," MPRA Paper 70057, University Library of Munich, Germany.
    16. Zhao, Xingrong & Zhang, Xi & Shao, Shuai, 2016. "Decoupling CO2 emissions and industrial growth in China over 1993–2013: The role of investment," Energy Economics, Elsevier, vol. 60(C), pages 275-292.
    17. Kerui Du & Boqiang Lin & Chunping Xie, 2017. "Exploring Change in China’s Carbon Intensity: A Decomposition Approach," Sustainability, MDPI, vol. 9(2), pages 1-14, February.
    18. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    19. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    20. Shigemi Kagawa & Yuriko Goto & Sangwon Suh & Keisuke Nansai & Yuki Kudoh, 2012. "Accounting for Changes in Automobile Gasoline Consumption in Japan: 2000–2007," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 1(1), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:22:p:15039-:d:973446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.