IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v166y2016icp220-238.html
   My bibliography  Save this article

Uncovering driving factors of carbon emissions from China’s mining sector

Author

Listed:
  • Shao, Shuai
  • Liu, Jianghua
  • Geng, Yong
  • Miao, Zhuang
  • Yang, Yingchun

Abstract

China has proposed its ambitious cap targets of carbon emissions in both carbon intensity (CO2 emissions per unit of GDP) and carbon scale (gross carbon emissions). Since mining sector is the foundation of the whole industrial production as well as a carbon intensive sector, it is critical to uncover the key driving factors on inducing corresponding carbon emissions so that appropriate mitigation policies can be raised. Under such a circumstance, this paper aims to fill such a research gap by employing a novel index decomposition method, namely, Generalized Divisia Index Method (GDIM), so that the driving factors of energy-related carbon emissions changes in China’s mining sector and its five sub-sectors over the period of 1999–2013 can be identified. In addition, a scenario analysis approach is applied in order to seek the feasible mitigation pathways on China’s mining sector and its five sub-sectors. The results indicate that output scale effect is the primary contributor of the increase in carbon emissions of both mining sector and its five sub-sectors and energy use effect also plays a positive role, while carbon intensity effect contributes most to the decrease in carbon emissions. All sub-sectors have achieved the target of 45% carbon intensity reduction except the extraction industry of petroleum and natural gas. Nevertheless, more efforts should be made for the whole mining sector in order to achieve the 2030 peak target of carbon scale.

Suggested Citation

  • Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
  • Handle: RePEc:eee:appene:v:166:y:2016:i:c:p:220-238
    DOI: 10.1016/j.apenergy.2016.01.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916300277
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.01.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Xu, Jin-Hua & Fleiter, Tobias & Eichhammer, Wolfgang & Fan, Ying, 2012. "Energy consumption and CO2 emissions in China's cement industry: A perspective from LMDI decomposition analysis," Energy Policy, Elsevier, vol. 50(C), pages 821-832.
    3. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    4. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    5. Meng, Lei & Guo, Ju'e & Chai, Jian & Zhang, Zengkai, 2011. "China's regional CO2 emissions: Characteristics, inter-regional transfer and emission reduction policies," Energy Policy, Elsevier, vol. 39(10), pages 6136-6144, October.
    6. Wang, Qunwei & Su, Bin & Sun, Jiasen & Zhou, Peng & Zhou, Dequn, 2015. "Measurement and decomposition of energy-saving and emissions reduction performance in Chinese cities," Applied Energy, Elsevier, vol. 151(C), pages 85-92.
    7. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    8. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    9. Shan, Yuli & Liu, Zhu & Guan, Dabo, 2016. "CO2 emissions from China’s lime industry," Applied Energy, Elsevier, vol. 166(C), pages 245-252.
    10. Liu, Lan-Cui & Fan, Ying & Wu, Gang & Wei, Yi-Ming, 2007. "Using LMDI method to analyze the change of China's industrial CO2 emissions from final fuel use: An empirical analysis," Energy Policy, Elsevier, vol. 35(11), pages 5892-5900, November.
    11. Ren, Shenggang & Fu, Xiang & Chen, XiaoHong, 2012. "Regional variation of energy-related industrial CO2 emissions mitigation in China," China Economic Review, Elsevier, vol. 23(4), pages 1134-1145.
    12. Ang, B.W. & Xu, X.Y., 2013. "Tracking industrial energy efficiency trends using index decomposition analysis," Energy Economics, Elsevier, vol. 40(C), pages 1014-1021.
    13. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    14. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    15. Carley, Sanya, 2009. "State renewable energy electricity policies: An empirical evaluation of effectiveness," Energy Policy, Elsevier, vol. 37(8), pages 3071-3081, August.
    16. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    17. Steenhof, Paul A., 2007. "Decomposition for emission baseline setting in China's electricity sector," Energy Policy, Elsevier, vol. 35(1), pages 280-294, January.
    18. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    19. Hoekstra, Rutger & van den Bergh, Jeroen C. J. M., 2003. "Comparing structural decomposition analysis and index," Energy Economics, Elsevier, vol. 25(1), pages 39-64, January.
    20. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    21. Lin, Boqiang & Liu, Jianghua & Yang, Yingchun, 2012. "Impact of carbon intensity and energy security constraints on China's coal import," Energy Policy, Elsevier, vol. 48(C), pages 137-147.
    22. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    23. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    24. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    25. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    26. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    27. Fan, Meiting & Shao, Shuai & Yang, Lili, 2015. "Combining global Malmquist–Luenberger index and generalized method of moments to investigate industrial total factor CO2 emission performance: A case of Shanghai (China)," Energy Policy, Elsevier, vol. 79(C), pages 189-201.
    28. Xu, Jin-Hua & Fleiter, Tobias & Fan, Ying & Eichhammer, Wolfgang, 2014. "CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050," Applied Energy, Elsevier, vol. 130(C), pages 592-602.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    2. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    3. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    4. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    5. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    6. Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
    7. Wang, Qunwei & Wang, Yizhong & Zhou, P. & Wei, Hongye, 2017. "Whole process decomposition of energy-related SO2 in Jiangsu Province, China," Applied Energy, Elsevier, vol. 194(C), pages 679-687.
    8. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    9. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    10. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    11. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    12. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    13. Shao, Shuai & Yang, Lili & Gan, Chunhui & Cao, Jianhua & Geng, Yong & Guan, Dabo, 2016. "Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 516-536.
    14. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    15. Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
    16. Wang, Miao & Feng, Chao, 2018. "Investigating the drivers of energy-related CO2 emissions in China’s industrial sector: From regional and provincial perspectives," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 136-147.
    17. Zhang, Chi & Su, Bin & Zhou, Kaile & Sun, Yuan, 2020. "A multi-dimensional analysis on microeconomic factors of China's industrial energy intensity (2000–2017)," Energy Policy, Elsevier, vol. 147(C).
    18. Uduak Akpan & Ovunda Green & Subhes Bhattacharyya & Salisu Isihak, 2015. "Effect of Technology Change on $$\hbox {CO}_{2}$$ CO 2 Emissions in Japan’s Industrial Sectors in the Period 1995–2005: An Input–Output Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 165-189, June.
    19. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    20. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:166:y:2016:i:c:p:220-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.