IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v166y2016icp245-252.html
   My bibliography  Save this article

CO2 emissions from China’s lime industry

Author

Listed:
  • Shan, Yuli
  • Liu, Zhu
  • Guan, Dabo

Abstract

China is now the world’s leading energy consumer and CO2 emitter; therefore, precise quantification of the CO2 emissions that occur in China is of serious concern. Although most studies focus on CO2 emissions from fossil fuel combustion and cement production, the emissions from lime production is not well researched. Lime production is the second largest source of carbon emissions from industrial processes after cement production. This is the first study to present an analysis of CO2 emissions from China’s lime production from 2001 to 2012, and we have estimated the process emissions (scope 1 direct emissions caused by the process), fossil fuel combustion emissions (scope 1 direct emissions caused by fossil fuel combustion), and scope 2 indirect emissions (CO2 emissions caused by electricity consumption) from China’s lime industry. The estimations show that the process emissions increased rapidly from 88.79million tonnes to 141.72million tonnes from 2001 to 2012. In 2012, the scope 1 emissions from fossil fuel combustion were 56.55million tonnes, whereas the scope 2 indirect emissions were 4.42million tonnes. Additionally, we analysed the uncertainty of our estimations, and our analysis shows that the relative uncertainty of the emission factors and activities data falls between 2.83% and 3.34%.

Suggested Citation

  • Shan, Yuli & Liu, Zhu & Guan, Dabo, 2016. "CO2 emissions from China’s lime industry," Applied Energy, Elsevier, vol. 166(C), pages 245-252.
  • Handle: RePEc:eee:appene:v:166:y:2016:i:c:p:245-252
    DOI: 10.1016/j.apenergy.2015.04.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915005541
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.04.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miner, R & Upton, B, 2002. "Methods for estimating greenhouse gas emissions from lime kilns at kraft pulp mills," Energy, Elsevier, vol. 27(8), pages 729-738.
    2. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    3. Zhu Liu & Dabo Guan & Douglas Crawford-Brown & Qiang Zhang & Kebin He & Jianguo Liu, 2013. "A low-carbon road map for China," Nature, Nature, vol. 500(7461), pages 143-145, August.
    4. Liu, Zhu & Geng, Yong & Lindner, Soeren & Zhao, Hongyan & Fujita, Tsuyoshi & Guan, Dabo, 2012. "Embodied energy use in China's industrial sectors," Energy Policy, Elsevier, vol. 49(C), pages 751-758.
    5. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    6. Zhao, Xiaoli & Ma, Qian & Yang, Rui, 2013. "Factors influencing CO2 emissions in China's power industry: Co-integration analysis," Energy Policy, Elsevier, vol. 57(C), pages 89-98.
    7. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    8. Shen, Lei & Gao, Tianming & Zhao, Jianan & Wang, Limao & Wang, Lan & Liu, Litao & Chen, Fengnan & Xue, Jingjing, 2014. "Factory-level measurements on CO2 emission factors of cement production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 337-349.
    9. Yang, Jin & Chen, Bin, 2014. "Carbon footprint estimation of Chinese economic sectors based on a three-tier model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 499-507.
    10. Klaus Hubacek & Kuishuang Feng & Bin Chen, 2011. "Changing Lifestyles Towards a Low Carbon Economy: An IPAT Analysis for China," Energies, MDPI, vol. 5(1), pages 1-10, December.
    11. Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Decomposition Analysis of Energy-Related Industrial CO 2 Emissions in China," Energies, MDPI, vol. 6(5), pages 1-19, April.
    12. Matthias Jonas & Gregg Marland & Volker Krey & Fabian Wagner & Zbigniew Nahorski, 2014. "Uncertainty in an emissions-constrained world," Climatic Change, Springer, vol. 124(3), pages 459-476, June.
    13. Ke-Xi Pan & Han-Xiong Zhu & Zheng Chang & Kuan-Hong Wu & Yu-Li Shan & Zhi-Xing Liu, 2013. "Estimation of Coal-Related Co2 Emissions: The Case of China," Energy & Environment, , vol. 24(7-8), pages 1309-1321, December.
    14. Price, L & Sinton, J & Worrell, E & Phylipsen, D & Xiulian, H & Ji, L, 2002. "Energy use and carbon dioxide emissions from steel production in China," Energy, Elsevier, vol. 27(5), pages 429-446.
    15. Xu, Jin-Hua & Fleiter, Tobias & Fan, Ying & Eichhammer, Wolfgang, 2014. "CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050," Applied Energy, Elsevier, vol. 130(C), pages 592-602.
    16. Zhou, Wenji & Zhu, Bing & Li, Qiang & Ma, Tieju & Hu, Shanying & Griffy-Brown, Charla, 2010. "CO2 emissions and mitigation potential in China's ammonia industry," Energy Policy, Elsevier, vol. 38(7), pages 3701-3709, July.
    17. Ke, Jing & McNeil, Michael & Price, Lynn & Khanna, Nina Zheng & Zhou, Nan, 2013. "Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties," Energy Policy, Elsevier, vol. 57(C), pages 172-181.
    18. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    19. Wang, Tao & Foliente, Greg & Song, Xinyi & Xue, Jiawei & Fang, Dongping, 2014. "Implications and future direction of greenhouse gas emission mitigation policies in the building sector of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 520-530.
    20. Dabo Guan & Stephan Klasen & Klaus Hubacek & Kuishuang Feng & Zhu Liu & Kebin He & Yong Geng & Qiang Zhang, 2014. "Determinants of stagnating carbon intensity in China," Nature Climate Change, Nature, vol. 4(11), pages 1017-1023, November.
    21. Sören Lindner & Dabo Guan, 2014. "A Hybrid-Unit Energy Input-Output Model to Evaluate Embodied Energy and Life Cycle Emissions for China's Economy," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 201-211, April.
    22. Zhou, Sheng & Kyle, G. Page & Yu, Sha & Clarke, Leon E. & Eom, Jiyong & Luckow, Patrick & Chaturvedi, Vaibhav & Zhang, Xiliang & Edmonds, James A., 2013. "Energy use and CO2 emissions of China's industrial sector from a global perspective," Energy Policy, Elsevier, vol. 58(C), pages 284-294.
    23. Xi, Fengming & Geng, Yong & Chen, Xudong & Zhang, Yunsong & Wang, Xinbei & Xue, Bing & Dong, Huijuan & Liu, Zhu & Ren, Wanxia & Fujita, Tsuyoshi & Zhu, Qinghua, 2011. "Contributing to local policy making on GHG emission reduction through inventorying and attribution: A case study of Shenyang, China," Energy Policy, Elsevier, vol. 39(10), pages 5999-6010, October.
    24. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    25. Zuoxi Liu & Huijuan Dong & Yong Geng & Chengpeng Lu & Wanxia Ren, 2014. "Insights into the Regional Greenhouse Gas (GHG) Emission of Industrial Processes: A Case Study of Shenyang, China," Sustainability, MDPI, vol. 6(6), pages 1-17, June.
    26. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    27. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Sandeep & Muhuri, Pranab K., 2019. "A novel GDP prediction technique based on transfer learning using CO2 emission dataset," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    3. Li, Li & Shan, Yuli & Lei, Yalin & Wu, Sanmang & Yu, Xiang & Lin, Xiyan & Chen, Yupei, 2019. "Decoupling of economic growth and emissions in China’s cities: A case study of the Central Plains urban agglomeration," Applied Energy, Elsevier, vol. 244(C), pages 36-45.
    4. Zheng, Heran & Shan, Yuli & Mi, Zhifu & Meng, Jing & Ou, Jiamin & Schroeder, Heike & Guan, Dabo, 2018. "How modifications of China's energy data affect carbon mitigation targets," Energy Policy, Elsevier, vol. 116(C), pages 337-343.
    5. Wang, Yutao & Yang, Xuechun & Sun, Mingxing & Ma, Lei & Li, Xiao & Shi, Lei, 2016. "Estimating carbon emissions from the pulp and paper industry: A case study," Applied Energy, Elsevier, vol. 184(C), pages 779-789.
    6. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    7. Li, Guangyao & Yang, Jin & Chen, Dingjiang & Hu, Shanying, 2017. "Impacts of the coming emission trading scheme on China’s coal-to-materials industry in 2020," Applied Energy, Elsevier, vol. 195(C), pages 837-849.
    8. Nadiia Charkovska & Mariia Halushchak & Rostyslav Bun & Zbigniew Nahorski & Tomohiro Oda & Matthias Jonas & Petro Topylko, 2019. "A high-definition spatially explicit modelling approach for national greenhouse gas emissions from industrial processes: reducing the errors and uncertainties in global emission modelling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 907-939, August.
    9. Liyin Shen & Yingli Lou & Yali Huang & Jindao Chen, 2018. "A driving–driven perspective on the key carbon emission sectors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 349-371, August.
    10. Fan, Jing-Li & Hou, Yun-Bing & Wang, Qian & Wang, Ce & Wei, Yi-Ming, 2016. "Exploring the characteristics of production-based and consumption-based carbon emissions of major economies: A multiple-dimension comparison," Applied Energy, Elsevier, vol. 184(C), pages 790-799.
    11. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    12. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    13. Cui, Duo & Deng, Zhu & Liu, Zhu, 2019. "China’s non-fossil fuel CO2 emissions from industrial processes," Applied Energy, Elsevier, vol. 254(C).
    14. Zhang, You & Yuan, Zengwei & Margni, Manuele & Bulle, Cécile & Hua, Hui & Jiang, Songyan & Liu, Xuewei, 2019. "Intensive carbon dioxide emission of coal chemical industry in China," Applied Energy, Elsevier, vol. 236(C), pages 540-550.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    2. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    3. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    4. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Liu, Xiaoyu & Duan, Zhiyuan & Shan, Yuli & Duan, Haiyan & Wang, Shuo & Song, Junnian & Wang, Xian'en, 2019. "Low-carbon developments in Northeast China: Evidence from cities," Applied Energy, Elsevier, vol. 236(C), pages 1019-1033.
    6. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    7. Xuan, Yanni & Yue, Qiang, 2016. "Forecast of steel demand and the availability of depreciated steel scrap in China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 1-12.
    8. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
    9. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    10. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    11. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    12. Wen, Zong-guo & Di, Jing-han & Yu, Xue-wei & Zhang, Xuan, 2017. "Analyses of CO2 mitigation roadmap in China’s power industry: Using a Backcasting Model," Applied Energy, Elsevier, vol. 205(C), pages 644-653.
    13. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
    14. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    15. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    16. Zhu, Bing & Zhou, Wenji & Hu, Shanying & Li, Qiang & Griffy-Brown, Charla & Jin, Yong, 2010. "CO2 emissions and reduction potential in China’s chemical industry," Energy, Elsevier, vol. 35(12), pages 4663-4670.
    17. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
    18. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    19. Mingquan Wang & Lingyun Zhang & Xin Su & Yang Lei & Qun Shen & Wei Wei & Maohua Wang, 2019. "Assessing the technology impact for industry carbon density reduction in China based on C3IAM-Tice," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1455-1468, December.
    20. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.

    More about this item

    Keywords

    CO2 emissions; Lime industry; Uncertainty analysis; China;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:166:y:2016:i:c:p:245-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.