IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v116y2018icp337-343.html
   My bibliography  Save this article

How modifications of China's energy data affect carbon mitigation targets

Author

Listed:
  • Zheng, Heran
  • Shan, Yuli
  • Mi, Zhifu
  • Meng, Jing
  • Ou, Jiamin
  • Schroeder, Heike
  • Guan, Dabo

Abstract

Frequent modifications to energy statistics have led to considerable uncertainty in China's ability to achieve its carbon mitigation targets. Here, we quantitatively measure the impact of energy data revisions on China's ability to achieve its mitigation targets. Our results indicate the following effects of data revisions: 1. Mitigation challenges have increased by 5%, and the achievement of national mitigation targets (as well as international pledges) might be postponed by two years. 2. Greater than expected carbon space or emission quota (from 22.94 to 31.31 Gt) will be obtained from 2015 to 2035. 3. CO2 peak levels may become highly uncertain, with the uncertainty varying from 12% to 29%. In addition to national mitigation targets, data revision has profound implications for key industrial sectors. For example, raw coal consumption by the cement and iron and steel industries has long been underestimated, bringing uncertainty to the achievement of industrial mitigation targets. Our results reveal considerable uncertainty in China's energy data, and this uncertainty suggests that previous mitigation achievements have been overestimated and that the mitigation targets, carbon space values, and peak level estimates proposed by future mitigation schemes may not be reached.

Suggested Citation

  • Zheng, Heran & Shan, Yuli & Mi, Zhifu & Meng, Jing & Ou, Jiamin & Schroeder, Heike & Guan, Dabo, 2018. "How modifications of China's energy data affect carbon mitigation targets," Energy Policy, Elsevier, vol. 116(C), pages 337-343.
  • Handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:337-343
    DOI: 10.1016/j.enpol.2018.02.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518301083
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sinton, Jonathan E., 2001. "Accuracy and reliability of China's energy statistics," China Economic Review, Elsevier, vol. 12(4), pages 373-383.
    2. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.
    3. Ma, Ben & Song, Guojun & Zhang, Lei & Sonnenfeld, David A., 2014. "Explaining sectoral discrepancies between national and provincial statistics in China," China Economic Review, Elsevier, vol. 30(C), pages 353-369.
    4. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO 2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.
    5. Qi, Ye & Stern, Nicholas & Wu, Tong & Lu, Jiaqi & Green, Fergus, 2016. "China's post-coal growth," LSE Research Online Documents on Economics 67503, London School of Economics and Political Science, LSE Library.
    6. Wang, Yafei & Liang, Sai, 2013. "Carbon dioxide mitigation target of China in 2020 and key economic sectors," Energy Policy, Elsevier, vol. 58(C), pages 90-96.
    7. Wang, Xin, 2011. "On China's energy intensity statistics: Toward a comprehensive and transparent indicator," Energy Policy, Elsevier, vol. 39(11), pages 7284-7289.
    8. van Ruijven, Bas J. & Weitzel, Matthias & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & Peterson, Sonja & Narita, Daiju, 2012. "Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches," Energy Policy, Elsevier, vol. 46(C), pages 116-134.
    9. Li, Huimin & Wu, Tong & Zhao, Xiaofan & Wang, Xiao & Qi, Ye, 2014. "Regional disparities and carbon “outsourcing”: The political economy of China's energy policy," Energy, Elsevier, vol. 66(C), pages 950-958.
    10. Liu, Zhu & Geng, Yong & Lindner, Soeren & Guan, Dabo, 2012. "Uncovering China’s greenhouse gas emission from regional and sectoral perspectives," Energy, Elsevier, vol. 45(1), pages 1059-1068.
    11. Zhang, Xiliang & Karplus, Valerie J. & Qi, Tianyu & Zhang, Da & He, Jiankun, 2016. "Carbon emissions in China: How far can new efforts bend the curve?," Energy Economics, Elsevier, vol. 54(C), pages 388-395.
    12. Shan, Yuli & Liu, Zhu & Guan, Dabo, 2016. "CO2 emissions from China’s lime industry," Applied Energy, Elsevier, vol. 166(C), pages 245-252.
    13. Li, Huimin & Zhao, Xiaofan & Yu, Yuqing & Wu, Tong & Qi, Ye, 2016. "China's numerical management system for reducing national energy intensity," Energy Policy, Elsevier, vol. 94(C), pages 64-76.
    14. Green, Fergus & Stern, Nicholas, 2016. "China’s changing economy: implications for its carbon dioxide emissions," LSE Research Online Documents on Economics 65483, London School of Economics and Political Science, LSE Library.
    15. Wang, Can & Lin, Jie & Cai, Wenjia & Liao, Hua, 2014. "China׳s carbon mitigation strategies: Enough?," Energy Policy, Elsevier, vol. 73(C), pages 47-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
    2. Li, Xian & Yang, Lili & Zheng, Heran & Shan, Yuli & Zhang, Zongyong & Song, Malin & Cai, Bofeng & Guan, Dabo, 2019. "City-level water-energy nexus in Beijing-Tianjin-Hebei region," Applied Energy, Elsevier, vol. 235(C), pages 827-834.
    3. Cui, Can & Shan, Yuli & Liu, Jianghua & Yu, Xiang & Wang, Hongtao & Wang, Zhen, 2019. "CO2 emissions and their spatial patterns of Xinjiang cities in China," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Liu, Yazhou & Bian, Jiacong & Li, Xiangmei & Liu, Shuyi & Lageson, David & Yin, Yingkai, 2020. "The optimization of regional industrial structure under the water-energy constraint: A case study on Hebei Province in China," Energy Policy, Elsevier, vol. 143(C).
    5. Ziyuan Chai & Zibibula Simayi & Zhihan Yang & Shengtian Yang, 2021. "Examining the Driving Factors of the Direct Carbon Emissions of Households in the Ebinur Lake Basin Using the Extended STIRPAT Model," Sustainability, MDPI, Open Access Journal, vol. 13(3), pages 1-14, January.
    6. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    7. Li, Jianglong & Huang, Jiashun, 2020. "The expansion of China's solar energy: Challenges and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Wang, Zhenyu & Meng, Jing & Zheng, Heran & Shao, Shuai & Wang, Daoping & Mi, Zhifu & Guan, Dabo, 2018. "Temporal change in India’s imbalance of carbon emissions embodied in international trade," Applied Energy, Elsevier, vol. 231(C), pages 914-925.
    9. Zhibo Zhao & Tian Yuan & Xunpeng Shi & Lingdi Zhao, 2020. "Heterogeneity in the relationship between carbon emission performance and urbanization: evidence from China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1363-1380, October.
    10. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    11. Li Wang & Jie Pei & Jing Geng & Zheng Niu, 2019. "Tracking the Spatial–Temporal Evolution of Carbon Emissions in China from 1999 to 2015: A Land Use Perspective," Sustainability, MDPI, Open Access Journal, vol. 11(17), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Ben & Zheng, Xinye, 2018. "Biased data revisions: Unintended consequences of China's energy-saving mandates," China Economic Review, Elsevier, vol. 48(C), pages 102-113.
    2. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    3. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    4. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    5. Burke, Paul J. & Liao, Hua, 2015. "Is the price elasticity of demand for coal in China increasing?," China Economic Review, Elsevier, vol. 36(C), pages 309-322.
    6. Lin, Jiang & Fridley, David & Lu, Hongyou & Price, Lynn & Zhou, Nan, 2018. "Has coal use peaked in China: Near-term trends in China's coal consumption," Energy Policy, Elsevier, vol. 123(C), pages 208-214.
    7. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    8. Guo, Jin & Du, Limin & Wei, Chu, 2019. "Equity-efficiency trade-off in China's energy capping policy," Energy Policy, Elsevier, vol. 126(C), pages 57-65.
    9. Tang, Pengcheng & Yang, Shuwang & Fu, Shuke, 2018. "Do political incentive affects China's land transfer in energy-intensive industries?," Energy, Elsevier, vol. 164(C), pages 550-559.
    10. Wu, Feng & Huang, Ningyu & Zhang, Fan & Niu, Lulu & Zhang, Yali, 2020. "Analysis of the carbon emission reduction potential of China's key industries under the IPCC 2 °C and 1.5 °C limits," Technological Forecasting and Social Change, Elsevier, vol. 159(C).
    11. Fang Guo & Tao Zhao & Yanan Wang & Yue Wang, 2016. "Estimating the abatement potential of provincial carbon intensity based on the environmental learning curve model in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(1), pages 685-705, October.
    12. Karplus, Valerie J. & Rausch, Sebastian & Zhang, Da, 2016. "Energy caps: Alternative climate policy instruments for China?," Energy Economics, Elsevier, vol. 56(C), pages 422-431.
    13. Li, Huimin & Wu, Tong & Zhao, Xiaofan & Wang, Xiao & Qi, Ye, 2014. "Regional disparities and carbon “outsourcing”: The political economy of China's energy policy," Energy, Elsevier, vol. 66(C), pages 950-958.
    14. Li, Huimin & Zhao, Xiaofan & Yu, Yuqing & Wu, Tong & Qi, Ye, 2016. "China's numerical management system for reducing national energy intensity," Energy Policy, Elsevier, vol. 94(C), pages 64-76.
    15. Weitzel, Matthias & Ghosh, Joydeep & Peterson, Sonja & Pradhan, Basanta K., 2015. "Effects of international climate policy for India: evidence from a national and global CGE model," Environment and Development Economics, Cambridge University Press, vol. 20(4), pages 516-538, August.
    16. Teng, Meixuan & Burke, Paul J. & Liao, Hua, 2019. "The demand for coal among China's rural households: Estimates of price and income elasticities," Energy Economics, Elsevier, vol. 80(C), pages 928-936.
    17. Liao, Hua & Wei, Yi-Ming, 2010. "China's energy consumption: A perspective from Divisia aggregation approach," Energy, Elsevier, vol. 35(1), pages 28-34.
    18. Zhi-Fu Mi & Yi-Ming Wei & Chen-Qi He & Hua-Nan Li & Xiao-Chen Yuan & Hua Liao, 2017. "Regional efforts to mitigate climate change in China: a multi-criteria assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 45-66, January.
    19. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    20. Yong Bian & Zhi Yu & Xuelan Zeng & Jingchun Feng & Chao He, 2018. "Achieving China’s Long-Term Carbon Emission Abatement Targets: A Perspective from Regional Disparity," Sustainability, MDPI, Open Access Journal, vol. 10(11), pages 1-19, November.

    More about this item

    Keywords

    Mitigation; China; Uncertainty; Data revision; CO2 inventory;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:116:y:2018:i:c:p:337-343. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.