IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/67503.html
   My bibliography  Save this paper

China's post-coal growth

Author

Listed:
  • Qi, Ye
  • Stern, Nicholas
  • Wu, Tong
  • Lu, Jiaqi
  • Green, Fergus

Abstract

Slowing GDP growth, a structural shift away from heavy industry, and more proactive policies on air pollution and clean energy have caused China's coal use to peak. It seems that economic growth has decoupled from growth in coal consumption.

Suggested Citation

  • Qi, Ye & Stern, Nicholas & Wu, Tong & Lu, Jiaqi & Green, Fergus, 2016. "China's post-coal growth," LSE Research Online Documents on Economics 67503, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:67503
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/67503/
    File Function: Open access version.
    Download Restriction: no

    References listed on IDEAS

    as
    1. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ce & Li, Bing-Bing & Liang, Qiao-Mei & Wang, Jin-Cheng, 2018. "Has China’s coal consumption already peaked? A demand-side analysis based on hybrid prediction models," Energy, Elsevier, vol. 162(C), pages 272-281.
    2. Liang, Wei & Gan, Ting & Zhang, Wei, 2019. "Dynamic evolution of characteristics and decomposition of factors influencing industrial carbon dioxide emissions in China: 1991–2015," Structural Change and Economic Dynamics, Elsevier, vol. 49(C), pages 93-106.
    3. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    4. Lin, Jiang & Fridley, David & Lu, Hongyou & Price, Lynn & Zhou, Nan, 2018. "Has coal use peaked in China: Near-term trends in China's coal consumption," Energy Policy, Elsevier, vol. 123(C), pages 208-214.
    5. Meng, Bo & Wang, Jianguo & Andrew, Robbie & Xiao, Hao & Xue, Jinjun & Peters, Glen P., 2017. "Spatial spillover effects in determining China's regional CO2 emissions growth: 2007–2010," Energy Economics, Elsevier, vol. 63(C), pages 161-173.
    6. Guo, Jin & Du, Limin & Wei, Chu, 2019. "Equity-efficiency trade-off in China's energy capping policy," Energy Policy, Elsevier, vol. 126(C), pages 57-65.
    7. Wang, Ning & Shen, Ruifang & Wen, Zongguo & De Clercq, Djavan, 2019. "Life cycle energy efficiency evaluation for coal development and utilization," Energy, Elsevier, vol. 179(C), pages 1-11.
    8. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    9. Zheng, Heran & Shan, Yuli & Mi, Zhifu & Meng, Jing & Ou, Jiamin & Schroeder, Heike & Guan, Dabo, 2018. "How modifications of China's energy data affect carbon mitigation targets," Energy Policy, Elsevier, vol. 116(C), pages 337-343.
    10. Lei Liu & Tong Wu & Ziqianhong Wan, 2019. "The EU-China relationship in a new era of global climate governance," Asia Europe Journal, Springer, vol. 17(2), pages 243-254, June.
    11. Li, Yiming & Li, Changqing, 2019. "Fossil energy subsidies in China's modern coal chemical industry," Energy Policy, Elsevier, vol. 135(C).
    12. Valentin Grimoux, 2018. "China’s Energy Policy & Investments and their Impact on the Sub-Saharan African Region," Working Papers 2018.27, Fondazione Eni Enrico Mattei.
    13. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    14. Kokorin, Alexey O. (Кокорин, Алексей) & Potashnikov, Vladimir Yu. (Поташников, Владимир), 2018. "Global Low Carbon Trend of Development as a Driving Force for Paris Agreement Implementation [Глобальный Низкоуглеродный Тренд Развития Как Движущая Сила Реализации Парижского Соглашения]," Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 3, pages 234-255, June.
    15. Zhou, Yanlai & Guo, Shenglian & Chang, Fi-John & Xu, Chong-Yu, 2018. "Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation," Applied Energy, Elsevier, vol. 228(C), pages 1726-1739.
    16. Maulidia, Martha & Dargusch, Paul & Ashworth, Peta & Ardiansyah, Fitrian, 2019. "Rethinking renewable energy targets and electricity sector reform in Indonesia: A private sector perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 231-247.
    17. Mathieu Blondeel & Thijs Van de Graaf, 2018. "Toward a global coal mining moratorium? A comparative analysis of coal mining policies in the USA, China, India and Australia," Climatic Change, Springer, vol. 150(1), pages 89-101, September.
    18. Grimoux, Valentin, 2018. "China’s Energy Policy & Investments and their Impact on the Sub-Saharan African Region," ESP: Energy Scenarios and Policy 276177, Fondazione Eni Enrico Mattei (FEEM).
    19. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
    20. Dong, Changgui & Qi, Ye & Dong, Wenjuan & Lu, Xi & Liu, Tianle & Qian, Shuai, 2018. "Decomposing driving factors for wind curtailment under economic new normal in China," Applied Energy, Elsevier, vol. 217(C), pages 178-188.
    21. Kejia Yang & Ralitsa Hiteva & Johan Schot, 2020. "Niche Acceleration driven by Expectation Dynamics among Niche and Regime Actors: China’s Wind and Solar Power Development," SPRU Working Paper Series 2020-03, SPRU - Science Policy Research Unit, University of Sussex Business School.

    More about this item

    Keywords

    Climate-change mitigation; Energy efficiency; Energy supply and demand; Sustainability;

    JEL classification:

    • N0 - Economic History - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:67503. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (LSERO Manager). General contact details of provider: http://edirc.repec.org/data/lsepsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.