IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v82y2015icp31-42.html
   My bibliography  Save this article

China's unconventional oil: A review of its resources and outlook for long-term production

Author

Listed:
  • Wang, Jianliang
  • Feng, Lianyong
  • Steve, Mohr
  • Tang, Xu
  • Gail, Tverberg E.
  • Mikael, Höök

Abstract

Due to the expected importance of unconventional oil in China's domestic oil supply, this paper first investigates the four types of China's unconventional oil resources comprehensively: heavy and extra-heavy oil, oil sands, broad tight oil and kerogen oil. Our results show that OIP (Oil-in-Place) of these four types of resources amount to 19.64 Gt, 5.97 Gt, 25.74 Gt and 47.64 Gt respectively, while TRRs (technically recoverable resources) amount to 2.24 Gt, 2.26 Gt, 6.95 Gt and 11.98 Gt respectively. Next, the Geologic Resources Supply-Demand Model is used to quantitatively project the long-term production of unconventional oil under two resource scenarios (TRR scenario and Proved Reserve + Cumulative Production scenario). Our results indicate that total unconventional oil production will peak in 2068 at 0.351 Gt in TRR scenario, whereas peak year and peak production of PR (proved reserves) + CP (Cumulative Production) scenario are 2023 and 0.048 Gt, significantly earlier and lower than those of TRR scenario. The implications of this growth in production of unconventional oil for China are also analyzed. The results show that if the TRR scenario can be achieved, it will increase total supply and improve oil security considerably. However, achieving the production in TRR scenario has many challenges, and even if it is achieved, China will still need to rely on imported oil.

Suggested Citation

  • Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
  • Handle: RePEc:eee:energy:v:82:y:2015:i:c:p:31-42
    DOI: 10.1016/j.energy.2014.12.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544214014145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2014.12.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Lianyong & Li, Junchen & Pang, Xiongqi, 2008. "China's oil reserve forecast and analysis based on peak oil models," Energy Policy, Elsevier, vol. 36(11), pages 4149-4153, November.
    2. Wang, Jianliang & Feng, Lianyong & Zhao, Lin & Snowden, Simon & Wang, Xu, 2011. "A comparison of two typical multicyclic models used to forecast the world's conventional oil production," Energy Policy, Elsevier, vol. 39(12), pages 7616-7621.
    3. Boudet, Hilary & Clarke, Christopher & Bugden, Dylan & Maibach, Edward & Roser-Renouf, Connie & Leiserowitz, Anthony, 2014. "“Fracking” controversy and communication: Using national survey data to understand public perceptions of hydraulic fracturing," Energy Policy, Elsevier, vol. 65(C), pages 57-67.
    4. Tverberg, Gail E., 2012. "Oil supply limits and the continuing financial crisis," Energy, Elsevier, vol. 37(1), pages 27-34.
    5. repec:cup:cbooks:9781107005198 is not listed on IDEAS
    6. Robert W. Howarth & Anthony Ingraffea & Terry Engelder, 2011. "Should fracking stop?," Nature, Nature, vol. 477(7364), pages 271-275, September.
    7. Tao, Zaipu & Li, Mingyu, 2007. "System dynamics model of Hubbert Peak for China's oil," Energy Policy, Elsevier, vol. 35(4), pages 2281-2286, April.
    8. Kuwayama, Yusuke & Olmstead, Sheila & Krupnick, Alan, 2013. "Water Resoures and Unconventional Fossil Fuel Development: Linking Physical Impacts to Social Costs," RFF Working Paper Series dp-13-34, Resources for the Future.
    9. McGlade, C.E., 2012. "A review of the uncertainties in estimates of global oil resources," Energy, Elsevier, vol. 47(1), pages 262-270.
    10. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    11. repec:cup:cbooks:9780521182935 is not listed on IDEAS
    12. Mohr, S.H. & Evans, G.M., 2011. "Long term forecasting of natural gas production," Energy Policy, Elsevier, vol. 39(9), pages 5550-5560, September.
    13. Wang, Jianliang & Feng, Lianyong & Zhao, Lin & Snowden, Simon, 2013. "China's natural gas: Resources, production and its impacts," Energy Policy, Elsevier, vol. 55(C), pages 690-698.
    14. Mohr, S.H. & Evans, G.M., 2010. "Long term prediction of unconventional oil production," Energy Policy, Elsevier, vol. 38(1), pages 265-276, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Framework for advanced exergoeconomic performance analysis and optimization of an oil shale retorting process," Energy, Elsevier, vol. 109(C), pages 62-76.
    2. Jun Yan & Lianyong Feng & Alina Steblyanskaya & Anton Sokolov & Nataliya Iskritskaya, 2019. "Creating an Energy Analysis Concept for Oil and Gas Companies: The Case of the Yakutiya Company in Russia," Energies, MDPI, vol. 12(2), pages 1-18, January.
    3. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    4. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    5. Chuantong Ruan & Jing Ba & José M. Carcione & Tiansheng Chen & Runfa He, 2021. "Microcrack Porosity Estimation Based on Rock Physics Templates: A Case Study in Sichuan Basin, China," Energies, MDPI, vol. 14(21), pages 1-18, November.
    6. Wang, Guoying & Liu, Shaowei & Yang, Dong & Fu, Mengxiong, 2022. "Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China," Energy, Elsevier, vol. 239(PC).
    7. Wang, Lele & Wei, Bing & You, Junyu & Pu, Wanfen & Tang, Jinyu & Lu, Jun, 2023. "Performance of a tight reservoir horizontal well induced by gas huff–n–puff integrating fracture geometry, rock stress-sensitivity and molecular diffusion: A case study using CO2, N2 and produced gas," Energy, Elsevier, vol. 263(PA).
    8. Yang, Mingyang & Huang, Shijun & Zhao, Fenglan & Sun, Haoyue & Chen, Xinyang, 2024. "Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory," Energy, Elsevier, vol. 294(C).
    9. Zhan, Honglei & Chen, Mengxi & Zhao, Kun & Li, Yizhang & Miao, Xinyang & Ye, Haimu & Ma, Yue & Hao, Shijie & Li, Hongfang & Yue, Wenzheng, 2018. "The mechanism of the terahertz spectroscopy for oil shale detection," Energy, Elsevier, vol. 161(C), pages 46-51.
    10. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    11. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    12. Wang, Ke & Feng, Lianyong & Wang, Jianliang & Xiong, Yi & Tverberg, Gail E., 2016. "An oil production forecast for China considering economic limits," Energy, Elsevier, vol. 113(C), pages 586-596.
    13. Wenxiang Chen & Zubo Zhang & Qingjie Liu & Xu Chen & Prince Opoku Appau & Fuyong Wang, 2018. "Experimental Investigation of Oil Recovery from Tight Sandstone Oil Reservoirs by Pressure Depletion," Energies, MDPI, vol. 11(10), pages 1-17, October.
    14. Juan Jin & Jiandong Liu & Weidong Jiang & Wei Cheng & Xiaowen Zhang, 2022. "Evolution of the Anisotropic Thermal Conductivity of Oil Shale with Temperature and Its Relationship with Anisotropic Pore Structure Evolution," Energies, MDPI, vol. 15(21), pages 1-16, October.
    15. Li, Hui & Han, De-hua & Sun, Min & Yuan, Hemin & Gao, Jinghuai, 2022. "An experimental investigation on effects of saturation levels and fluid types on elastic properties of bitumen-saturated sands at elevated temperatures," Energy, Elsevier, vol. 238(PC).
    16. Pang, Boxue & Ren, Xianghui & Liu, Zaobao & Wang, Xin & Liu, Xu, 2023. "Investigation on multiphase flow of multi-size cuttings particles and non-Newtonian drilling fluids in oil and gas horizontal well drilling using kinetic theory of granular flow," Energy, Elsevier, vol. 282(C).
    17. Peng, Zhiyong & Xu, Jialing & Rong, Siqi & Luo, Kui & Lu, Libo & Jin, Hui & Zhao, Qiuyang & Guo, Liejin, 2023. "Thermodynamic and environmental analysis for multi-component supercritical thermal fluid generation by supercritical water gasification of oilfield wastewater," Energy, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ke & Feng, Lianyong & Wang, Jianliang & Xiong, Yi & Tverberg, Gail E., 2016. "An oil production forecast for China considering economic limits," Energy, Elsevier, vol. 113(C), pages 586-596.
    2. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    3. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    4. Wang, Jianliang & Guo, Meiyu & Liu, Mingming & Wei, Xinqiang, 2020. "Long-term outlook for global rare earth production," Resources Policy, Elsevier, vol. 65(C).
    5. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
    6. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    7. Fang, Jianchun & Lau, Chi Keung Marco & Lu, Zhou & Wu, Wanshan, 2018. "Estimating Peak uranium production in China – Based on a Stella model," Energy Policy, Elsevier, vol. 120(C), pages 250-258.
    8. Zhang, Yujiang & Feng, Guorui & Zhang, Min & Ren, Hongrui & Bai, Jinwen & Guo, Yuxia & Jiang, Haina & Kang, Lixun, 2016. "Residual coal exploitation and its impact on sustainable development of the coal industry in China," Energy Policy, Elsevier, vol. 96(C), pages 534-541.
    9. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    10. Wang, Jianliang & Feng, Lianyong & Tverberg, Gail E., 2013. "An analysis of China's coal supply and its impact on China's future economic growth," Energy Policy, Elsevier, vol. 57(C), pages 542-551.
    11. Xie, Minghua & Wei, Xiaonan & Chen, Chuanglian & Sun, Chuanwang, 2022. "China's natural gas production peak and energy return on investment (EROI): From the perspective of energy security," Energy Policy, Elsevier, vol. 164(C).
    12. Hosseini, Seyed Hossein & Shakouri G., Hamed, 2016. "A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach," Energy Policy, Elsevier, vol. 91(C), pages 64-74.
    13. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    14. Logar, Ivana & van den Bergh, Jeroen C.J.M., 2013. "The impact of peak oil on tourism in Spain: An input–output analysis of price, demand and economy-wide effects," Energy, Elsevier, vol. 54(C), pages 155-166.
    15. Judith I. M. de Groot & Elisa Schweiger & Iljana Schubert, 2020. "Social Influence, Risk and Benefit Perceptions, and the Acceptability of Risky Energy Technologies: An Explanatory Model of Nuclear Power Versus Shale Gas," Risk Analysis, John Wiley & Sons, vol. 40(6), pages 1226-1243, June.
    16. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    17. de Castro, Carlos & Miguel, Luis Javier & Mediavilla, Margarita, 2009. "The role of non conventional oil in the attenuation of peak oil," Energy Policy, Elsevier, vol. 37(5), pages 1825-1833, May.
    18. Wang, Xibo & Lei, Yalin & Ge, Jianping & Wu, Sanmang, 2015. "Production forecast of China׳s rare earths based on the Generalized Weng model and policy recommendations," Resources Policy, Elsevier, vol. 43(C), pages 11-18.
    19. Cotton, Matthew & Rattle, Imogen & Van Alstine, James, 2014. "Shale gas policy in the United Kingdom: An argumentative discourse analysis," Energy Policy, Elsevier, vol. 73(C), pages 427-438.
    20. Northey, S. & Mohr, S. & Mudd, G.M. & Weng, Z. & Giurco, D., 2014. "Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 190-201.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:82:y:2015:i:c:p:31-42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.