IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics036054422400553x.html
   My bibliography  Save this article

Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory

Author

Listed:
  • Yang, Mingyang
  • Huang, Shijun
  • Zhao, Fenglan
  • Sun, Haoyue
  • Chen, Xinyang

Abstract

CO2 huff-n-puff is a promising method for enhancing oil recovery in tight reservoirs while simultaneously contributing to CO2 geological storage. However, the performance of this method is significantly affected by fractures resulting from hydraulic fracturing and natural fractures. The impact of fracture on oil transport behavior in different pores remains unclear and warrants further investigation. In this study, CO2 huff-n-puff experiments were conducted under induced fracture conditions. A new method for quantifying the relationship between transverse relaxation time T2 and pore radius was proposed by fitting the slopes of the T2 spectrum and the pore size distribution (PSD) curve derived from Micro X-ray computed tomography (Micro-CT). The impact of the fracture on the effective utilization limit was explored, and the fractal dimensions of different cycles were evaluated during CO2 huff-n-puff. The results showed that the oil recoveries of the fracture-free and the fractured samples were 19.97% and 31.16%, corresponding to the effective utilization limits of 1.52 μm and 0.96 μm, respectively. Moreover, based on the fractal characteristics of the whole process of CO2 huff-n-puff, the pore system was divided into micropores (<0.20 μm), small pores (0.20–0.63 μm), intermediate pores (0.63–2.00 μm), and large pores (>2.00 μm). Furthermore, the incremental recovery for each cycle mainly comes from large pores and gradually decreases as the fractal dimension is less than 2.85. The fracture has a significant impact on the migration characteristics of crude oil. The incremental oil in the intermediate pores of the fractured sample, caused by negative convection, was 2.88 times greater than that of the fracture-free sample. Finally, it was found that the gravity effect was more prominent, significantly affecting the remaining oil distributions in fractured reservoirs.

Suggested Citation

  • Yang, Mingyang & Huang, Shijun & Zhao, Fenglan & Sun, Haoyue & Chen, Xinyang, 2024. "Experimental investigation of CO2 huff-n-puff in tight oil reservoirs: Effects of the fracture on the dynamic transport characteristics based on the nuclear magnetic resonance and fractal theory," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400553x
    DOI: 10.1016/j.energy.2024.130781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400553X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s036054422400553x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.