IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v236y2021ics0360544221017977.html
   My bibliography  Save this article

Characterizing pore-level oil mobilization processes in unconventional reservoirs assisted by state-of-the-art nuclear magnetic resonance technique

Author

Listed:
  • Zhang, Xiang
  • Wei, Bing
  • You, Junyu
  • Liu, Jiang
  • Wang, Dianlin
  • Lu, Jun
  • Tong, Jing

Abstract

Rigorous characterizations of fluid contents, rock/fluid interactions, and pore-size distributions are crucial in the development of unconventional resources. As a nonintrusive and real-time tool, Nuclear Magnetic Resonance (NMR) draws increasingly attention for these applications. Herein, we first summarized the most intensively used NMR methods, T2 (1D), T1-T2 and D-T2 (2D) maps, and then performed a critical analyses of pore-scale oil mobilization characterization assisted by NMR, aiming to advance the understanding of unconventional reservoir exploitation. Numerous efforts have been made on presenting the oil mobilization process by 1D NMR. There, however, exists some controversial and even contradictory for similar research objects. Quantifying the interactions in place between gas and oil still needs further investigation. The 2D NMR technique is much more informative compared to the 1D NMR, whereas only limited qualitative analysis can be conducted and the accuracy of the measurement needs to be enhanced for clay mineral-rich reservoirs. Water and oil signals can be easily distinguished in 2D NMR maps with the increase of NMR frequency, which greatly help to identify the fluids in nano-size pores. Currently, all the NMR measurements are limited to the short core plug (length≤10 cm); thus, future attention should be given to the development of NMR hardware.

Suggested Citation

  • Zhang, Xiang & Wei, Bing & You, Junyu & Liu, Jiang & Wang, Dianlin & Lu, Jun & Tong, Jing, 2021. "Characterizing pore-level oil mobilization processes in unconventional reservoirs assisted by state-of-the-art nuclear magnetic resonance technique," Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017977
    DOI: 10.1016/j.energy.2021.121549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuloaga, Pavel & Yu, Wei & Miao, Jijun & Sepehrnoori, Kamy, 2017. "Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs," Energy, Elsevier, vol. 134(C), pages 181-192.
    2. Aliya Mukhametdinova & Andrey Kazak & Tagir Karamov & Natalia Bogdanovich & Maksim Serkin & Sergey Melekhin & Alexey Cheremisin, 2020. "Reservoir Properties of Low-Permeable Carbonate Rocks: Experimental Features," Energies, MDPI, vol. 13(9), pages 1-25, May.
    3. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    4. Ghomian, Yousef & Pope, Gary A. & Sepehrnoori, Kamy, 2008. "Reservoir simulation of CO2 sequestration pilot in Frio brine formation, USA Gulf Coast," Energy, Elsevier, vol. 33(7), pages 1055-1067.
    5. Ren, Bo & Ren, Shaoran & Zhang, Liang & Chen, Guoli & Zhang, Hua, 2016. "Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China," Energy, Elsevier, vol. 98(C), pages 108-121.
    6. Ting Chen & Zhengming Yang & Yunhong Ding & Yutian Luo & Dan Qi & Wei Lin & Xinli Zhao, 2018. "Waterflooding Huff-n-puff in Tight Oil Cores Using Online Nuclear Magnetic Resonance," Energies, MDPI, vol. 11(6), pages 1-14, June.
    7. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
    2. Zhang, Huidong & Liu, Yong & Tang, Jiren & Liu, Wenchuan & Chen, Changjiang, 2022. "Investigation on the fluctuation characteristics and its influence on impact force of supercritical carbon dioxide jet," Energy, Elsevier, vol. 253(C).
    3. Wang, Ziwei & Qin, Yong & Shen, Jian & Li, Teng & Zhang, Xiaoyang & Cai, Ying, 2022. "A novel permeability prediction model for coal based on dynamic transformation of pores in multiple scales," Energy, Elsevier, vol. 257(C).
    4. Zhang, Yingnan & Li, Shujun & Dou, Xiangji & Wang, Sen & He, Yanfeng & Feng, Qihong, 2023. "Molecular insights into the natural gas regulating tight oil movability," Energy, Elsevier, vol. 270(C).
    5. Wang, Sijia & Li, Shaohua & Liu, Donglei & Shi, Menglan & Tong, Baocai & Cheng, Chengzu & Jiang, Lanlan & Song, Yongchen, 2023. "Study of the impact of various porous media on pore space utilization and CO2 storage by injection of microbubbles into oil reservoirs," Applied Energy, Elsevier, vol. 339(C).
    6. Shi, Qingmin & Cui, Shidong & Wang, Shuangming & Mi, Yichen & Sun, Qiang & Wang, Shengquan & Shi, Chenyu & Yu, Jizhou, 2022. "Experiment study on CO2 adsorption performance of thermal treated coal: Inspiration for CO2 storage after underground coal thermal treatment," Energy, Elsevier, vol. 254(PA).
    7. Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    2. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    3. Rahmad Syah & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & John William Grimaldo Guerrero & Mahyuddin K. M. Nasution & Afshin Davarpanah & Dadan Ramdan & Ahmed Sayed M. Metwally, 2021. "A Laboratory Approach to Measure Enhanced Gas Recovery from a Tight Gas Reservoir during Supercritical Carbon Dioxide Injection," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    4. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    5. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    6. Xingbang Meng & Zhan Meng & Jixiang Ma & Tengfei Wang, 2018. "Performance Evaluation of CO 2 Huff-n-Puff Gas Injection in Shale Gas Condensate Reservoirs," Energies, MDPI, vol. 12(1), pages 1-18, December.
    7. Ren, Bo & Duncan, Ian J., 2019. "Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA," Energy, Elsevier, vol. 167(C), pages 391-401.
    8. Wang, Lele & Wei, Bing & You, Junyu & Pu, Wanfen & Tang, Jinyu & Lu, Jun, 2023. "Performance of a tight reservoir horizontal well induced by gas huff–n–puff integrating fracture geometry, rock stress-sensitivity and molecular diffusion: A case study using CO2, N2 and produced gas," Energy, Elsevier, vol. 263(PA).
    9. Yang, Renfeng & Zhang, Jinqing & Chen, Han & Jiang, Ruizhong & Sun, Zhe & Rui, Zhenhua, 2019. "The injectivity variation prediction model for water flooding oilfields sustainable development," Energy, Elsevier, vol. 189(C).
    10. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    11. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    12. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    13. Filip Simeski & Matthias Ihme, 2023. "Supercritical fluids behave as complex networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    15. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    16. Ren, Bo & Ren, Shaoran & Zhang, Liang & Chen, Guoli & Zhang, Hua, 2016. "Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China," Energy, Elsevier, vol. 98(C), pages 108-121.
    17. Jiang, Meiling & Fang, Haixu & Liu, Yang & Zhang, Yunfeng & Wang, Chaoqun, 2023. "On movable fluid saturation of tight sandstone and main controlling factors —case study on the Fuyu oil layer in the Da'an oilfield in the Songliao basin," Energy, Elsevier, vol. 267(C).
    18. Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
    19. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    20. Han, Jinju & Lee, Minkyu & Lee, Wonsuk & Lee, Youngsoo & Sung, Wonmo, 2016. "Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding," Applied Energy, Elsevier, vol. 161(C), pages 85-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:236:y:2021:i:c:s0360544221017977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.