IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p11606-d661064.html
   My bibliography  Save this article

A Laboratory Approach to Measure Enhanced Gas Recovery from a Tight Gas Reservoir during Supercritical Carbon Dioxide Injection

Author

Listed:
  • Rahmad Syah

    (Data Science & Computational Intelligence Research Group, Universitas Medan Area, Medan 20112, Indonesia)

  • Seyed Mehdi Alizadeh

    (Petroleum Engineering Department, Australian College of Kuwait, West Mishref 13015, Kuwait)

  • Karina Shamilyevna Nurgalieva

    (Department of Development and Operation of Oil and Gas Fields, Saint-Petersburg Mining University, 199106 St. Petersburg, Russia)

  • John William Grimaldo Guerrero

    (Department of Energy, Universidad de la Costa, Barranquilla 080001, Colombia)

  • Mahyuddin K. M. Nasution

    (Data Science & Computational Intelligence Research Group, Universitas Sumatera Utara, Medan 20222, Indonesia)

  • Afshin Davarpanah

    (Chemistry of Interfaces, Luleå University of Technology, SE-97187 Luleå, Sweden)

  • Dadan Ramdan

    (Data Science & Computational Intelligence Research Group, Universitas Medan Area, Medan 20112, Indonesia)

  • Ahmed Sayed M. Metwally

    (Department of Mathematics, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

Abstract

Supercritical carbon dioxide injection in tight reservoirs is an efficient and prominent enhanced gas recovery method, as it can be more mobilized in low-permeable reservoirs due to its molecular size. This paper aimed to perform a set of laboratory experiments to evaluate the impacts of permeability and water saturation on enhanced gas recovery, carbon dioxide storage capacity, and carbon dioxide content during supercritical carbon dioxide injection. It is observed that supercritical carbon dioxide provides a higher gas recovery increase after the gas depletion drive mechanism is carried out in low permeable core samples. This corresponds to the feasible mobilization of the supercritical carbon dioxide phase through smaller pores. The maximum gas recovery increase for core samples with 0.1 mD is about 22.5%, while gas recovery increase has lower values with the increase in permeability. It is about 19.8%, 15.3%, 12.1%, and 10.9% for core samples with 0.22, 0.36, 0.54, and 0.78 mD permeability, respectively. Moreover, higher water saturations would be a crucial factor in the gas recovery enhancement, especially in the final pore volume injection, as it can increase the supercritical carbon dioxide dissolving in water, leading to more displacement efficiency. The minimum carbon dioxide storage for 0.1 mD core samples is about 50%, while it is about 38% for tight core samples with the permeability of 0.78 mD. By decreasing water saturation from 0.65 to 0.15, less volume of supercritical carbon dioxide is involved in water, and therefore, carbon dioxide storage capacity increases. This is indicative of a proper gas displacement front in lower water saturation and higher gas recovery factor. The findings of this study can help for a better understanding of the gas production mechanism and crucial parameters that affect gas recovery from tight reservoirs.

Suggested Citation

  • Rahmad Syah & Seyed Mehdi Alizadeh & Karina Shamilyevna Nurgalieva & John William Grimaldo Guerrero & Mahyuddin K. M. Nasution & Afshin Davarpanah & Dadan Ramdan & Ahmed Sayed M. Metwally, 2021. "A Laboratory Approach to Measure Enhanced Gas Recovery from a Tight Gas Reservoir during Supercritical Carbon Dioxide Injection," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11606-:d:661064
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/11606/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/11606/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuloaga, Pavel & Yu, Wei & Miao, Jijun & Sepehrnoori, Kamy, 2017. "Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs," Energy, Elsevier, vol. 134(C), pages 181-192.
    2. Kim, Tae Hong & Cho, Jinhyung & Lee, Kun Sang, 2017. "Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects," Applied Energy, Elsevier, vol. 190(C), pages 1195-1206.
    3. Hamid Esfandyari & Abdorrahman Moghani & Feridun Esmaeilzadeh & Afshin Davarpanah, 2021. "A Laboratory Approach to Measure Carbonate Rocks’ Adsorption Density by Surfactant and Polymer," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-7, February.
    4. Basirat Esan & Abubakar Hassan, 2020. "Nexus between Carbon Dioxide Emission, Energy Consumption and Economic Growth in Nigeria," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 9(1), pages 46-55.
    5. Basirat Esan & Abubakar Hassan, 2020. "Nexus between Carbon Dioxide Emission, Energy Consumption and Economic Growth in Nigeria," International Journal of Sustainable Energy and Environmental Research, Conscientia Beam, vol. 9(1), pages 46-55.
    6. Ezekiel, Justin & Ebigbo, Anozie & Adams, Benjamin M. & Saar, Martin O., 2020. "Combining natural gas recovery and CO2-based geothermal energy extraction for electric power generation," Applied Energy, Elsevier, vol. 269(C).
    7. Huang, Jingwei & Jin, Tianying & Barrufet, Maria & Killough, John, 2020. "Evaluation of CO2 injection into shale gas reservoirs considering dispersed distribution of kerogen," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulaziz S. Alkabaa & Osman Taylan & Mustafa Tahsin Yilmaz & Ehsan Nazemi & El Mostafa Kalmoun, 2022. "An Investigation on Spiking Neural Networks Based on the Izhikevich Neuronal Model: Spiking Processing and Hardware Approach," Mathematics, MDPI, vol. 10(4), pages 1-21, February.
    2. Mohammed Balubaid & Mohammad Amir Sattari & Osman Taylan & Ahmed A. Bakhsh & Ehsan Nazemi, 2021. "Applications of Discrete Wavelet Transform for Feature Extraction to Increase the Accuracy of Monitoring Systems of Liquid Petroleum Products," Mathematics, MDPI, vol. 9(24), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiang & Wei, Bing & You, Junyu & Liu, Jiang & Wang, Dianlin & Lu, Jun & Tong, Jing, 2021. "Characterizing pore-level oil mobilization processes in unconventional reservoirs assisted by state-of-the-art nuclear magnetic resonance technique," Energy, Elsevier, vol. 236(C).
    2. Wang, Yanwei & Dai, Zhenxue & Chen, Li & Shen, Xudong & Chen, Fangxuan & Soltanian, Mohamad Reza, 2023. "An integrated multi-scale model for CO2 transport and storage in shale reservoirs," Applied Energy, Elsevier, vol. 331(C).
    3. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    4. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    5. Kun Qian & Shenglai Yang & Hongen Dou & Qian Wang & Lu Wang & Yu Huang, 2018. "Experimental Investigation on Microscopic Residual Oil Distribution During CO 2 Huff-and-Puff Process in Tight Oil Reservoirs," Energies, MDPI, vol. 11(10), pages 1-16, October.
    6. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    7. Abdirizak Omar & Mouadh Addassi & Volker Vahrenkamp & Hussein Hoteit, 2021. "Co-Optimization of CO 2 Storage and Enhanced Gas Recovery Using Carbonated Water and Supercritical CO 2," Energies, MDPI, vol. 14(22), pages 1-21, November.
    8. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    9. Junrong Liu & Lu Sun & Zunzhao Li & Xingru Wu, 2019. "Experimental Study on Reducing CO 2 –Oil Minimum Miscibility Pressure with Hydrocarbon Agents," Energies, MDPI, vol. 12(10), pages 1-17, May.
    10. Fengshuang Du & Bahareh Nojabaei, 2019. "A Review of Gas Injection in Shale Reservoirs: Enhanced Oil/Gas Recovery Approaches and Greenhouse Gas Control," Energies, MDPI, vol. 12(12), pages 1-33, June.
    11. Li, Bo & Yu, Hao & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Meng, SiWei & Liu, He & Wu, HengAn, 2023. "A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks," Energy, Elsevier, vol. 284(C).
    12. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    13. Danqing Liu & Yilian Li & Ramesh Agarwal, 2020. "Evaluation of CO 2 Storage in a Shale Gas Reservoir Compared to a Deep Saline Aquifer in the Ordos Basin of China," Energies, MDPI, vol. 13(13), pages 1-18, July.
    14. Wen, Chuang & Karvounis, Nikolas & Walther, Jens Honore & Yan, Yuying & Feng, Yuqing & Yang, Yan, 2019. "An efficient approach to separate CO2 using supersonic flows for carbon capture and storage," Applied Energy, Elsevier, vol. 238(C), pages 311-319.
    15. Calderón, Andrés J. & Pekney, Natalie J., 2020. "Optimization of enhanced oil recovery operations in unconventional reservoirs," Applied Energy, Elsevier, vol. 258(C).
    16. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    17. Zhang, Tong & Tang, Ming & Ma, Yankun & Zhu, Guangpei & Zhang, Qinghe & Wu, Jun & Xie, Zhizheng, 2022. "Experimental study on CO2/Water flooding mechanism and oil recovery in ultralow - Permeability sandstone with online LF-NMR," Energy, Elsevier, vol. 252(C).
    18. Tzu-Keng Lin & Bieng-Zih Hsieh, 2020. "Prevention of Seabed Subsidence of Class-1 Gas Hydrate Deposits via CO 2 -EGR: A Numerical Study with Coupled Geomechanics-Hydrate Reaction-Multiphase Fluid Flow Model," Energies, MDPI, vol. 13(7), pages 1-21, April.
    19. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    20. Hunt, Julian David & Nascimento, Andreas & Nascimento, Nazem & Vieira, Lara Werncke & Romero, Oldrich Joel, 2022. "Possible pathways for oil and gas companies in a sustainable future: From the perspective of a hydrogen economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:11606-:d:661064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.