IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp171-183.html
   My bibliography  Save this article

Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales

Author

Listed:
  • Jin, Lu
  • Hawthorne, Steven
  • Sorensen, James
  • Pekot, Lawrence
  • Kurz, Bethany
  • Smith, Steven
  • Heebink, Loreal
  • Herdegen, Volker
  • Bosshart, Nicholas
  • Torres, José
  • Dalkhaa, Chantsalmaa
  • Peterson, Kyle
  • Gorecki, Charles
  • Steadman, Edward
  • Harju, John

Abstract

Although well logs and core data show that there is significant oil content in Bakken shales, the oil transport behavior in these source rocks is still not well understood. This lack of understanding impedes the drilling and production operations in the shale members. A series of experiments were conducted to investigate the rock properties of the Bakken shales and how to extract oil from the shales using supercritical CO2. High-pressure mercury injection tests showed that pore throat radii are less than 10nm for most pores in both the upper and lower Bakken samples. Such small pore sizes yield high capillary pressure in the rock and make fluid flow difficult. Total organic carbon content was measured using 180 shale samples, and kerogen was characterized by Rock-Eval pyrolysis, which indicated considerable organic carbon present (10–15wt%) in the shales. However, oil and gas are difficult to mobilize from organic matter using conventional methods. A systematic experimental procedure was carried out to reveal the potential for extracting hydrocarbons from the shale samples using supercritical CO2 under typical Bakken reservoir conditions (e.g., 34.5MPa and 110°C). Results showed that supercritical CO2 enables extraction of a considerable portion (15–65%) of hydrocarbons from the Bakken shales within 24 h. Measurement of CO2 adsorption isotherm showed that Bakken shale has a considerable capability to trap CO2 (up to 17mg/g) under a wide range of pressures. The experimental results suggest the possibility of using supercritical CO2 injection to increase the ultimate oil recovery and store a considerable quantity of CO2 in the Bakken Formation.

Suggested Citation

  • Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:171-183
    DOI: 10.1016/j.apenergy.2017.10.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917314654
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.10.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:171-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.