IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v260y2022ics0360544222020199.html
   My bibliography  Save this article

Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study

Author

Listed:
  • An, Qiyi
  • Zhang, Qingsong
  • Li, Xianghui
  • Yu, Hao
  • Yin, Zhanchao
  • Zhang, Xiao

Abstract

Supercritical carbon dioxide (SC–CO2) is an ideal working fluid to develop geological resources, while the efficient development and utilization are seriously hindered by the unclear dynamic alteration effect on reservoir properties. To overcome this obstacle, the static and dynamic alteration tests are performed. By comparatively analysing the change laws of mineral and microstructure, the dynamic alteration mechanism of SC-CO2 is revealed to inhibit the dissolution of soluble minerals and promote the exfoliation of insoluble minerals. Based on the porosity effect on strength of intact rocks, the altered strength also exponentially decreases with porosity increasing. Under dynamic alteration, the effects of pore structure evolution are differently expressed on the mechanical damage according to different types of rocks, exhibiting as the enhanced effect for the rocks controlled by insoluble minerals and the insignificantly differential effect for the rocks controlled by soluble minerals. More remarkable effect of pore size distribution is found on the altered strength than that of porosity, and more severe damage is caused by the alteration of pores with larger size. In addition, the proposed mineral content ratio index ISR shows universal and credible influence trend on the strength-pore structure relationship of different types of rocks under SC-CO2 alteration.

Suggested Citation

  • An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
  • Handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020199
    DOI: 10.1016/j.energy.2022.125125
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222020199
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125125?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    2. Jasinge, D. & Ranjith, P.G. & Choi, Xavier & Fernando, J., 2012. "Investigation of the influence of coal swelling on permeability characteristics using natural brown coal and reconstituted brown coal specimens," Energy, Elsevier, vol. 39(1), pages 303-309.
    3. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    4. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    5. Song, Weiqiang & Wang, Chunguang & Du, Yukun & Shen, Baotang & Chen, Shaojie & Jiang, Yujing, 2020. "Comparative analysis on the heat transfer efficiency of supercritical CO2 and H2O in the production well of enhanced geothermal system," Energy, Elsevier, vol. 205(C).
    6. Isaka, B.L. Avanthi & Ranjith, P.G. & Rathnaweera, T.D. & Perera, M.S.A. & Kumari, W.G.P., 2019. "Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass," Renewable Energy, Elsevier, vol. 136(C), pages 428-441.
    7. Wang, Chang-Long & Cheng, Wen-Long & Nian, Yong-Le & Yang, Lei & Han, Bing-Bing & Liu, Ming-Hou, 2018. "Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration," Energy, Elsevier, vol. 142(C), pages 157-167.
    8. Pan, Chunjian & Chávez, Oscar & Romero, Carlos E. & Levy, Edward K. & Aguilar Corona, Alicia & Rubio-Maya, Carlos, 2016. "Heat mining assessment for geothermal reservoirs in Mexico using supercritical CO2 injection," Energy, Elsevier, vol. 102(C), pages 148-160.
    9. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Zhang, Xiao, 2022. "Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2," Energy, Elsevier, vol. 259(C).
    10. Huang, Wenbo & Cao, Wenjiong & Jiang, Fangming, 2018. "A novel single-well geothermal system for hot dry rock geothermal energy exploitation," Energy, Elsevier, vol. 162(C), pages 630-644.
    11. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    12. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Zhang, Xiao, 2022. "Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2," Energy, Elsevier, vol. 259(C).
    2. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    3. Liu, Kouqi & Jin, Zhijun & Zeng, Lianbo & Ozotta, Ogochukwu & Gentzis, Thomas & Ostadhassan, Mehdi, 2023. "Alteration in the mechanical properties of the Bakken during exposure to supercritical CO2," Energy, Elsevier, vol. 262(PB).
    4. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    5. Esteves, Ana Filipa & Santos, Francisca Maria & Magalhães Pires, José Carlos, 2019. "Carbon dioxide as geothermal working fluid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    6. Bai, Bing & Ni, Hong-jian & Shi, Xian & Guo, Xing & Ding, Lu, 2021. "The experimental investigation of effect of supercritical CO2 immersion on mechanical properties and pore structure of shale," Energy, Elsevier, vol. 228(C).
    7. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    8. Gao, Xiang & Li, Tailu & Meng, Nan & Gao, Haiyang & Li, Xuelong & Gao, Ruizhao & Wang, Zeyu & Wang, Jingyi, 2023. "Supercritical flow and heat transfer of SCO2 in geothermal reservoir under non-Darcy's law combined with power generation from hot dry rock," Renewable Energy, Elsevier, vol. 206(C), pages 428-440.
    9. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    10. Li, Sihai & Zhang, Shicheng & Xing, Huilin & Zou, Yushi, 2022. "CO2–brine–rock interactions altering the mineralogical, physical, and mechanical properties of carbonate-rich shale oil reservoirs," Energy, Elsevier, vol. 256(C).
    11. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    12. Wang, Chenyu & Li, Shujian & Zhang, Dongming & Yu, Beichen & Wang, Xiaolei, 2023. "Study on the effects of water content and layer orientation on mechanical properties and failure mechanism of shale," Energy, Elsevier, vol. 271(C).
    13. Wu, Yu & Li, Pan & Hao, Yang & Wanniarachchi, Ayal & Zhang, Yan & Peng, Shuhua, 2021. "Experimental research on carbon storage in a CO2-Based enhanced geothermal system," Renewable Energy, Elsevier, vol. 175(C), pages 68-79.
    14. Zhao, Weizhong & Su, Xianbo & Xia, Daping & Hou, Shihui & Wang, Qian & Zhou, Yixuan, 2022. "Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion," Energy, Elsevier, vol. 259(C).
    15. Yang, Kang & Zhou, Junping & Xian, Xuefu & Zhou, Lei & Zhang, Chengpeng & Tian, Shifeng & Lu, Zhaohui & Zhang, Fengshou, 2022. "Chemical-mechanical coupling effects on the permeability of shale subjected to supercritical CO2-water exposure," Energy, Elsevier, vol. 248(C).
    16. Mohammad H. Bhuiyan & Nicolaine Agofack & Kamila M. Gawel & Pierre R. Cerasi, 2020. "Micro- and Macroscale Consequences of Interactions between CO 2 and Shale Rocks," Energies, MDPI, vol. 13(5), pages 1-30, March.
    17. Lin, Kui & Zhao, Ya-Pu, 2021. "Entropy and enthalpy changes during adsorption and displacement of shale gas," Energy, Elsevier, vol. 221(C).
    18. Wang, Chenyu & Geng, Jiabo & Zhang, Dongming & Li, Shujian & Wang, Xiaolei & Li, Qinglin, 2023. "Investigation on damage evolution law of anisotropic shale at different hydraulic pressures," Energy, Elsevier, vol. 282(C).
    19. Ahmed Fatah & Ziad Bennour & Hisham Ben Mahmud & Raoof Gholami & Md. Mofazzal Hossain, 2020. "A Review on the Influence of CO 2 /Shale Interaction on Shale Properties: Implications of CCS in Shales," Energies, MDPI, vol. 13(12), pages 1-27, June.
    20. Li, Zhibin & Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Feng & Jiang, Fangming, 2023. "An enhanced super-long gravity heat pipe geothermal system: Conceptual design and numerical study," Energy, Elsevier, vol. 267(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:260:y:2022:i:c:s0360544222020199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.