IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v175y2021icp68-79.html

Experimental research on carbon storage in a CO2-Based enhanced geothermal system

Author

Listed:
  • Wu, Yu
  • Li, Pan
  • Hao, Yang
  • Wanniarachchi, Ayal
  • Zhang, Yan
  • Peng, Shuhua

Abstract

Ensuring sustainable energy development and reducing CO2 emissions are two major challenges that need to be overcome to deal with the global economic crisis and to alleviate climate change. Hot dry rock is a renewable energy resource with a huge potential. CO2-based enhanced geothermal systems (CO2-EGS) can achieve both heat extraction and CO2 storage in hot dry rock. To investigate the storage rate, a heat extraction experiment involving the alternating cyclic injection of water and supercritical CO2 was conducted. The ion contents of the fracture solution of the different injection cycles were measured, and the amount of CO2 mineralization storage was calculated. In addition, changes in the mineral composition of the fracture surface were observed and analysed. The results revealed that the mineral dissolution on the fracture surface was mainly feldspars, which possibly accompanied biotite dissolution. The precipitated minerals that stored the carbon were mainly calcite and dolomite, and possibly illite and cancrinite. Many blocky carbonate minerals were distributed on the flat surface of the fracture, while many rod-shaped carbonates were distributed in the concave holes of the microfractures. The research results reveal the CO2 storage mechanism and are significant for the CO2 storage prediction in the CO2-EGS.

Suggested Citation

  • Wu, Yu & Li, Pan & Hao, Yang & Wanniarachchi, Ayal & Zhang, Yan & Peng, Shuhua, 2021. "Experimental research on carbon storage in a CO2-Based enhanced geothermal system," Renewable Energy, Elsevier, vol. 175(C), pages 68-79.
  • Handle: RePEc:eee:renene:v:175:y:2021:i:c:p:68-79
    DOI: 10.1016/j.renene.2021.04.139
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.139?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Liang & Ezekiel, Justin & Li, Dexiang & Pei, Jingjing & Ren, Shaoran, 2014. "Potential assessment of CO2 injection for heat mining and geological storage in geothermal reservoirs of China," Applied Energy, Elsevier, vol. 122(C), pages 237-246.
    2. Wang, Chang-Long & Cheng, Wen-Long & Nian, Yong-Le & Yang, Lei & Han, Bing-Bing & Liu, Ming-Hou, 2018. "Simulation of heat extraction from CO2-based enhanced geothermal systems considering CO2 sequestration," Energy, Elsevier, vol. 142(C), pages 157-167.
    3. Gür, Turgut M., 2020. "Perspectives on oxygen-based coal conversion towards zero-carbon power generation," Energy, Elsevier, vol. 196(C).
    4. Cienna C. Thomas & Vanessa Loodts & Laurence Rongy & Anne De Wit, 2016. "Convective dissolution of CO2 in reactive alkaline solutions: Active role of spectator ions," ULB Institutional Repository 2013/246598, ULB -- Universite Libre de Bruxelles.
    5. Sanem Elidemir & Nilgün Güleç, 2018. "Geochemical characterization of geothermal systems in western Anatolia (Turkey): implications for CO2 trapping mechanisms in prospective CO2†EGS sites," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 63-76, February.
    6. Isaka, B.L. Avanthi & Ranjith, P.G. & Rathnaweera, T.D. & Perera, M.S.A. & Kumari, W.G.P., 2019. "Influence of long-term operation of supercritical carbon dioxide based enhanced geothermal system on mineralogical and microstructurally-induced mechanical alteration of surrounding rock mass," Renewable Energy, Elsevier, vol. 136(C), pages 428-441.
    7. Abadie, Luis M. & Chamorro, José M. & Huclin, Sébastien & Ven, Dirk-Jan van de, 2020. "On flexible hydropower and security of supply: Spain beyond 2020," Energy, Elsevier, vol. 203(C).
    8. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di, Chaojie & Wei, Yizheng & Ma, Haoming & Deng, Peng & Liu, Benjieming & Wang, Kun & Peng, Long & Chen, Zhangxin, 2025. "Accelerating geological gas storage simulations: A novel and efficient gases-brine phase equilibrium calculation algorithm," Renewable Energy, Elsevier, vol. 252(C).
    2. Ji, Jiayan & Song, Xianzhi & Song, Guofeng & Xu, Fuqiang & Shi, Yu & Lv, Zehao & Li, Shuang & Yi, Junlin, 2023. "Study on fracture evolution model of the enhanced geothermal system under thermal-hydraulic-chemical-deformation coupling," Energy, Elsevier, vol. 269(C).
    3. Ding, Wei & Jiang, Tingting & Chen, Wenyi & Hu, Dawei & Zhou, Hui & Yang, Fujian, 2025. "Experimental study on CO2-brine-sandstone interaction and reservoir stability analysis under high temperature and high pressure," Renewable Energy, Elsevier, vol. 249(C).
    4. Ji, Jiayan & Song, Xianzhi & Li, Shuang & Xu, Fuqiang & Song, Guofeng & Shi, Yu & Yi, Junlin, 2023. "Study on the effect of fracture morphology on fracture deformation based on the thermal-hydraulic-chemical-deformation coupling model," Energy, Elsevier, vol. 282(C).
    5. Ji, Jiayan & Zhao, Jialin & Yi, Junlin & Song, Xianzhi & Wang, Gaosheng, 2025. "Optimization of hot dry rock heat extraction performance considering the interaction of multi-mineral component water-rock reactions and fracture roughness," Energy, Elsevier, vol. 320(C).
    6. Zhu, Jianlu & Xie, Naiya & Miao, Qing & Li, Zihe & Hu, Qihui & Yan, Feng & Li, Yuxing, 2024. "Simulation of boost path and phase control method in supercritical CO2 pipeline commissioning process," Renewable Energy, Elsevier, vol. 231(C).
    7. Zheng, Mingming & Li, Wensheng & Liu, Richeng & Wang, Yingchao & Zhu, Zhennan & Xie, Jingyu & Bao, Ting, 2025. "Numerical insights into impact of rock matrix and fracture characteristics on sCO2-enhanced geothermal heat extraction," Energy, Elsevier, vol. 335(C).
    8. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Zhang, Xiao, 2022. "Experimental study on alteration kinetics for predicting rock mechanics damage caused by SC-CO2," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esteves, Ana Filipa & Santos, Francisca Maria & Magalhães Pires, José Carlos, 2019. "Carbon dioxide as geothermal working fluid: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    3. Song, Weiqiang & Wang, Chunguang & Du, Yukun & Shen, Baotang & Chen, Shaojie & Jiang, Yujing, 2020. "Comparative analysis on the heat transfer efficiency of supercritical CO2 and H2O in the production well of enhanced geothermal system," Energy, Elsevier, vol. 205(C).
    4. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    5. de Chalendar, Jacques A. & Benson, Sally M., 2021. "A physics-informed data reconciliation framework for real-time electricity and emissions tracking," Applied Energy, Elsevier, vol. 304(C).
    6. Hui Su & Jing-Tan Han & Botong Miao & Mahdi Salehi & Chao-Jun Li, 2024. "Photosynthesis of CH3OH via oxygen-atom-grafting from CO2 to CH4 enabled by AuPd/GaN," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    7. Freeman, Sergio & Agar, Ertan, 2025. "Driving change: Analyzing the interplay of electric vehicle adoption and grid electrification in New England," Energy, Elsevier, vol. 314(C).
    8. Zhang, Liang & Li, Xin & Zhang, Yin & Cui, Guodong & Tan, Chunyang & Ren, Shaoran, 2017. "CO2 injection for geothermal development associated with EGR and geological storage in depleted high-temperature gas reservoirs," Energy, Elsevier, vol. 123(C), pages 139-148.
    9. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    10. Zhao, Kai & Zhao, Li & Tang, Qiao Q. & Chen, Qing L. & He, Chang & Zhang, Bing J., 2024. "A novel optimization framework integrating multiple initialization, automatic topologization and MINLP reduction to accelerate large-scale heat exchanger network synthesis," Energy, Elsevier, vol. 307(C).
    11. Freire Ordóñez, Diego & Shah, Nilay & Guillén-Gosálbez, Gonzalo, 2021. "Economic and full environmental assessment of electrofuels via electrolysis and co-electrolysis considering externalities," Applied Energy, Elsevier, vol. 286(C).
    12. Dongxu Zhang & Ting Min & Ming Jiang & Yaxiong Yu & Qiang Zhou, 2021. "Numerical Simulation of Fluidized Bed Gasifier Coupled with Solid Oxide Fuel Cell Fed with Solid Carbon," Energies, MDPI, vol. 14(10), pages 1-24, May.
    13. Xi Yang & Chris P. Nielsen & Shaojie Song & Michael B. McElroy, 2022. "Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen," Nature Energy, Nature, vol. 7(10), pages 955-965, October.
    14. Marconi, Pietro & Rosa, Lorenzo, 2023. "Role of biomethane to offset natural gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    15. Kazuki Shun & Kohsuke Mori & Takumi Kidawara & Satoshi Ichikawa & Hiromi Yamashita, 2024. "Heteroatom doping enables hydrogen spillover via H+/e− diffusion pathways on a non-reducible metal oxide," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    17. Fries, Steven, 2023. "Sequencing decarbonization policies to manage their macroeconomic impacts," INET Oxford Working Papers 2023-26, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
    18. Li, Xian & Chen, Jialing & Sun, Xiangyu & Zhao, Yao & Chong, Clive & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Multi-criteria decision making of biomass gasification-based cogeneration systems with heat storage and solid dehumidification of desiccant coated heat exchangers," Energy, Elsevier, vol. 233(C).
    19. Chen, Yun & Wang, Huidong & Li, Tuo & Wang, Yang & Ren, Feng & Ma, Guowei, 2020. "Evaluation of geothermal development considering proppant embedment in hydraulic fractures," Renewable Energy, Elsevier, vol. 153(C), pages 985-997.
    20. Chen, Lei & Gao, Lingyun & Xing, Shuping & Chen, Zhicong & Wang, Weiwei, 2024. "Zero-carbon microgrid: Real-world cases, trends, challenges, and future research prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:175:y:2021:i:c:p:68-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.