IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v203y2020ics0360544220309762.html
   My bibliography  Save this article

On flexible hydropower and security of supply: Spain beyond 2020

Author

Listed:
  • Abadie, Luis M.
  • Chamorro, José M.
  • Huclin, Sébastien
  • Ven, Dirk-Jan van de

Abstract

Generation adequacy is a key ingredient to security of electricity supply (SoS). Some national plans envisage a future decrease in the number of coal-fired stations and an increase in renewable installed capacity. This forecast, along with the future reduction of nuclear capacity, will lead to a combination of less baseload plants and sizeable intermittent generation. Hence there is a risk that supply will be unable to meet demand and generation adequacy will suffer.

Suggested Citation

  • Abadie, Luis M. & Chamorro, José M. & Huclin, Sébastien & Ven, Dirk-Jan van de, 2020. "On flexible hydropower and security of supply: Spain beyond 2020," Energy, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309762
    DOI: 10.1016/j.energy.2020.117869
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220309762
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117869?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico & Aven, Terje, 2011. "Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?," Energy Policy, Elsevier, vol. 39(10), pages 6308-6320, October.
    2. Bailera, Manuel & Lisbona, Pilar, 2018. "Energy storage in Spain: Forecasting electricity excess and assessment of power-to-gas potential up to 2050," Energy, Elsevier, vol. 143(C), pages 900-910.
    3. Abadie, Luis Ma & Chamorro, José M., 2019. "Physical adequacy of a power generation system: The case of Spain in the long term," Energy, Elsevier, vol. 166(C), pages 637-652.
    4. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    5. Guittet, Mélanie & Capezzali, Massimiliano & Gaudard, Ludovic & Romerio, Franco & Vuille, François & Avellan, François, 2016. "Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective," Energy, Elsevier, vol. 111(C), pages 560-579.
    6. Vieira, F. & Ramos, H.M., 2008. "Hybrid solution and pump-storage optimization in water supply system efficiency: A case study," Energy Policy, Elsevier, vol. 36(11), pages 4142-4148, November.
    7. McPherson, Madeleine & Karney, Bryan, 2017. "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model," Energy, Elsevier, vol. 138(C), pages 185-196.
    8. Matt Thompson & Matt Davison & Henning Rasmussen, 2004. "Valuation and Optimal Operation of Electric Power Plants in Competitive Markets," Operations Research, INFORMS, vol. 52(4), pages 546-562, August.
    9. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    10. Daniel Huertas‐Hernando & Hossein Farahmand & Hannele Holttinen & Juha Kiviluoma & Erkka Rinne & Lennart Söder & Michael Milligan & Eduardo Ibanez & Sergio Martín Martínez & Emilio Gomez‐Lazaro & Ana , 2017. "Hydro power flexibility for power systems with variable renewable energy sources: an IEA Task 25 collaboration," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 6(1), January.
    11. Tarroja, Brian & AghaKouchak, Amir & Samuelsen, Scott, 2016. "Quantifying climate change impacts on hydropower generation and implications on electric grid greenhouse gas emissions and operation," Energy, Elsevier, vol. 111(C), pages 295-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yu & Li, Pan & Hao, Yang & Wanniarachchi, Ayal & Zhang, Yan & Peng, Shuhua, 2021. "Experimental research on carbon storage in a CO2-Based enhanced geothermal system," Renewable Energy, Elsevier, vol. 175(C), pages 68-79.
    2. Gong, Yu & Liu, Pan & Ming, Bo & Feng, Maoyuan & Huang, Kangdi & Wang, Yibo, 2022. "Identifying the functional form of operating rules for hydro–photovoltaic hybrid power systems," Energy, Elsevier, vol. 243(C).
    3. Saber, Hossein & Mazaheri, Hesam & Ranjbar, Hossein & Moeini-Aghtaie, Moein & Lehtonen, Matti, 2021. "Utilization of in-pipe hydropower renewable energy technology and energy storage systems in mountainous distribution networks," Renewable Energy, Elsevier, vol. 172(C), pages 789-801.
    4. Ricardo Jacob Mendoza-Rivera & Francisco Venegas-Martínez, 2021. "Impacto de la pandemia COVID-19 en los precios de la gasolina y el gas natural en las principales economías de Latinoamérica," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(3), pages 1-22, Julio - S.
    5. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    6. Sagar Adhikari & Jirakiattikul Sopin & Kua-Anan Techato & Bibek Kumar Mudbhari, 2023. "A Systematic Review on Investment Risks in Hydropower to Developing Sustainable Renewable Energy Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 222-230, March.
    7. Hou, Rui & Li, Shanshan & Wu, Minrong & Ren, Guowen & Gao, Wei & Khayatnezhad, Majid & gholinia, Fatemeh, 2021. "Assessing of impact climate parameters on the gap between hydropower supply and electricity demand by RCPs scenarios and optimized ANN by the improved Pathfinder (IPF) algorithm," Energy, Elsevier, vol. 237(C).
    8. Luis M. Abadie, 2021. "Energy Market Prices in Times of COVID-19: The Case of Electricity and Natural Gas in Spain," Energies, MDPI, vol. 14(6), pages 1-17, March.
    9. Bigerna, Simona & Ceccacci, Francesca & Micheli, Silvia & Polinori, Paolo, 2023. "Between saying and doing for ensuring energy resources supply: The case of Italy in time of crisis," Resources Policy, Elsevier, vol. 85(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    2. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2018. "A quantitative analysis of Japan's optimal power generation mix in 2050 and the role of CO2-free hydrogen," Energy, Elsevier, vol. 165(PB), pages 1200-1219.
    3. Matsuo, Yuhji & Endo, Seiya & Nagatomi, Yu & Shibata, Yoshiaki & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Investigating the economics of the power sector under high penetration of variable renewable energies," Applied Energy, Elsevier, vol. 267(C).
    4. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    5. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    6. Tarroja, Brian & Shaffer, Brendan P. & Samuelsen, Scott, 2018. "Resource portfolio design considerations for materially-efficient planning of 100% renewable electricity systems," Energy, Elsevier, vol. 157(C), pages 460-471.
    7. Gaudard, Ludovic & Avanzi, Francesco & De Michele, Carlo, 2018. "Seasonal aspects of the energy-water nexus: The case of a run-of-the-river hydropower plant," Applied Energy, Elsevier, vol. 210(C), pages 604-612.
    8. Lisbona, Pilar & Frate, Guido Francesco & Bailera, Manuel & Desideri, Umberto, 2018. "Power-to-Gas: Analysis of potential decarbonization of Spanish electrical system in long-term prospective," Energy, Elsevier, vol. 159(C), pages 656-668.
    9. Abadie, Luis Ma & Chamorro, José M., 2019. "Physical adequacy of a power generation system: The case of Spain in the long term," Energy, Elsevier, vol. 166(C), pages 637-652.
    10. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    11. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    14. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    15. Ramos, J.S. & Ramos, H.M., 2009. "Sustainable application of renewable sources in water pumping systems: Optimized energy system configuration," Energy Policy, Elsevier, vol. 37(2), pages 633-643, February.
    16. Kovacic, Zora & Giampietro, Mario, 2015. "Empty promises or promising futures? The case of smart grids," Energy, Elsevier, vol. 93(P1), pages 67-74.
    17. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    18. Ana Paula Coelho Clauberg & Renato de Mello & Flávio José Simioni & Simone Sehnem, 2021. "System for assessing the sustainability conditions of small hydro plants by fuzzy logic," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(2), pages 300-317, March.
    19. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    20. Takashima, Ryuta & Goto, Makoto & Kimura, Hiroshi & Madarame, Haruki, 2008. "Entry into the electricity market: Uncertainty, competition, and mothballing options," Energy Economics, Elsevier, vol. 30(4), pages 1809-1830, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:203:y:2020:i:c:s0360544220309762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.