IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v143y2018icp900-910.html
   My bibliography  Save this article

Energy storage in Spain: Forecasting electricity excess and assessment of power-to-gas potential up to 2050

Author

Listed:
  • Bailera, Manuel
  • Lisbona, Pilar

Abstract

Innovative technologies and strategies to decarbonize electricity generation, transport, and heat supply sector are key factors to achieve the global climate targets set by international organizations. One of these strategies implies a significant increase of the share of renewable electricity in the energy mix. Given the intermittent behaviour of renewable energy sources (RES), a detailed assessment of future energy scenarios is required to estimate the potential surplus in electricity production. To facilitate the penetration of renewable energy sources up to significant shares, massive long-term electricity storage technologies must be considered. Among these technologies, power-to-gas (PtG) systems may foster the fossil fuels switch by providing storage of surplus renewable electricity in the form of hydrogen or synthetic natural gas. Thus, this energy carrier could be reconverted to electrical power to cover peak demand periods. In this work, a study of the prospective Spanish scenario is presented and the potential of PtG technology is assessed in terms of expected renewable surplus. We found that the annual electricity surplus for 2050 might vary between 1.4 TWh and 13.5 TWh, and the required PtG capacity would be in the range 7.0–19.5 GW, depending on the renewable production pattern and the increment of demand.

Suggested Citation

  • Bailera, Manuel & Lisbona, Pilar, 2018. "Energy storage in Spain: Forecasting electricity excess and assessment of power-to-gas potential up to 2050," Energy, Elsevier, vol. 143(C), pages 900-910.
  • Handle: RePEc:eee:energy:v:143:y:2018:i:c:p:900-910
    DOI: 10.1016/j.energy.2017.11.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217319254
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.11.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    2. Céline Jullien & Virginie Pignon & Stéphane Robin & Carine Staropoli, 2012. "Coordinating cross-border congestion management through auctions: An experimental approach to European solutions," Post-Print halshs-00617026, HAL.
    3. Jullien, Céline & Pignon, Virginie & Robin, Stéphane & Staropoli, Carine, 2012. "Coordinating cross-border congestion management through auctions: An experimental approach to European solutions," Energy Economics, Elsevier, vol. 34(1), pages 1-13.
    4. Steubing, Bernhard & Ballmer, Isabel & Gassner, Martin & Gerber, Léda & Pampuri, Luca & Bischof, Sandro & Thees, Oliver & Zah, Rainer, 2014. "Identifying environmentally and economically optimal bioenergy plant sizes and locations: A spatial model of wood-based SNG value chains," Renewable Energy, Elsevier, vol. 61(C), pages 57-68.
    5. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
    6. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    7. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    8. Varone, Alberto & Ferrari, Michele, 2015. "Power to liquid and power to gas: An option for the German Energiewende," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 207-218.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshida, Akira & Nakazawa, Hiroto & Kenmotsu, Naoki & Amano, Yoshiharu, 2022. "Economic analysis of a proton exchange membrane electrolyser cell for hydrogen supply scenarios in Japan," Energy, Elsevier, vol. 251(C).
    2. Lewandowska-Bernat, Anna & Desideri, Umberto, 2018. "Opportunities of power-to-gas technology in different energy systems architectures," Applied Energy, Elsevier, vol. 228(C), pages 57-67.
    3. Abadie, Luis M. & Chamorro, José M. & Huclin, Sébastien & Ven, Dirk-Jan van de, 2020. "On flexible hydropower and security of supply: Spain beyond 2020," Energy, Elsevier, vol. 203(C).
    4. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    5. Rosenfeld, Daniel C. & Böhm, Hans & Lindorfer, Johannes & Lehner, Markus, 2020. "Scenario analysis of implementing a power-to-gas and biomass gasification system in an integrated steel plant: A techno-economic and environmental study," Renewable Energy, Elsevier, vol. 147(P1), pages 1511-1524.
    6. van Leeuwen, Charlotte & Mulder, Machiel, 2018. "Power-to-gas in electricity markets dominated by renewables," Applied Energy, Elsevier, vol. 232(C), pages 258-272.
    7. Andrade, Carlos & Selosse, Sandrine & Maïzi, Nadia, 2022. "The role of power-to-gas in the integration of variable renewables," Applied Energy, Elsevier, vol. 313(C).
    8. Raquel Fernández-González & Andrés Suárez-García & Miguel Ángel Álvarez Feijoo & Elena Arce & Montserrat Díez-Mediavilla, 2020. "Spanish Photovoltaic Solar Energy: Institutional Change, Financial Effects, and the Business Sector," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    9. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2019. "Potential and sensitivity analysis of long-term hydrogen production in resolving surplus RES generation—a case study in Japan," Energy, Elsevier, vol. 171(C), pages 1164-1172.
    10. Colbertaldo, Paolo & Guandalini, Giulio & Campanari, Stefano, 2018. "Modelling the integrated power and transport energy system: The role of power-to-gas and hydrogen in long-term scenarios for Italy," Energy, Elsevier, vol. 154(C), pages 592-601.
    11. Greiml, Matthias & Fritz, Florian & Kienberger, Thomas, 2021. "Increasing installable photovoltaic power by implementing power-to-gas as electricity grid relief – A techno-economic assessment," Energy, Elsevier, vol. 235(C).
    12. Bailera, Manuel & Lisbona, Pilar & Peña, Begoña & Alarcón, Andreina & Guilera, Jordi & Perpiñán, Jorge & Romeo, Luis M., 2022. "Synthetic natural gas production in a 1 kW reactor using Ni–Ce/Al2O3 and Ru–Ce/Al2O3: Kinetics, catalyst degradation and process design," Energy, Elsevier, vol. 256(C).
    13. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Optimal operation value of combined wind power and energy storage in multi-stage electricity markets," Applied Energy, Elsevier, vol. 235(C), pages 1153-1168.
    14. Lisbona, Pilar & Frate, Guido Francesco & Bailera, Manuel & Desideri, Umberto, 2018. "Power-to-Gas: Analysis of potential decarbonization of Spanish electrical system in long-term prospective," Energy, Elsevier, vol. 159(C), pages 656-668.
    15. Auguadra, Marco & Ribó-Pérez, David & Gómez-Navarro, Tomás, 2023. "Planning the deployment of energy storage systems to integrate high shares of renewables: The Spain case study," Energy, Elsevier, vol. 264(C).
    16. Böhm, Hans & Zauner, Andreas & Rosenfeld, Daniel C. & Tichler, Robert, 2020. "Projecting cost development for future large-scale power-to-gas implementations by scaling effects," Applied Energy, Elsevier, vol. 264(C).
    17. Teotónio, Carla & Rodríguez, Miguel & Roebeling, Peter & Fortes, Patrícia, 2020. "Water competition through the ‘water-energy’ nexus: Assessing the economic impacts of climate change in a Mediterranean context," Energy Economics, Elsevier, vol. 85(C).
    18. Zhang, Xian & Chan, K.W. & Wang, Huaizhi & Hu, Jiefeng & Zhou, Bin & Zhang, Yan & Qiu, Jing, 2019. "Game-theoretic planning for integrated energy system with independent participants considering ancillary services of power-to-gas stations," Energy, Elsevier, vol. 176(C), pages 249-264.
    19. Álvaro González Lorente & Montserrat Hernández López & Francisco Javier Martín Álvarez & Javier Mendoza Jiménez, 2020. "Differences in Electricity Generation from Renewable Sources from Similar Environmental Conditions: The Cases of Spain and Cuba," Sustainability, MDPI, vol. 12(12), pages 1-18, June.
    20. Abadie, Luis Ma & Chamorro, José M., 2019. "Physical adequacy of a power generation system: The case of Spain in the long term," Energy, Elsevier, vol. 166(C), pages 637-652.
    21. Cheng, Ying & Liu, Mingbo & Chen, Honglin & Yang, Ziwei, 2021. "Optimization of multi-carrier energy system based on new operation mechanism modelling of power-to-gas integrated with CO2-based electrothermal energy storage," Energy, Elsevier, vol. 216(C).
    22. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    23. He, Chuan & Wu, Lei & Liu, Tianqi & Wei, Wei & Wang, Cheng, 2018. "Co-optimization scheduling of interdependent power and gas systems with electricity and gas uncertainties," Energy, Elsevier, vol. 159(C), pages 1003-1015.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    2. Blanco, Herib & Nijs, Wouter & Ruf, Johannes & Faaij, André, 2018. "Potential of Power-to-Methane in the EU energy transition to a low carbon system using cost optimization," Applied Energy, Elsevier, vol. 232(C), pages 323-340.
    3. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Uchman, Wojciech & Skorek-Osikowska, Anna & Jurczyk, Michał & Węcel, Daniel, 2020. "The analysis of dynamic operation of power-to-SNG system with hydrogen generator powered with renewable energy, hydrogen storage and methanation unit," Energy, Elsevier, vol. 213(C).
    6. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    7. Zoltán Csedő & Botond Sinóros-Szabó & Máté Zavarkó, 2020. "Seasonal Energy Storage Potential Assessment of WWTPs with Power-to-Methane Technology," Energies, MDPI, vol. 13(18), pages 1-21, September.
    8. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.
    9. Katla, Daria & Węcel, Daniel & Jurczyk, Michał & Skorek-Osikowska, Anna, 2023. "Preliminary experimental study of a methanation reactor for conversion of H2 and CO2 into synthetic natural gas (SNG)," Energy, Elsevier, vol. 263(PD).
    10. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    11. Gray, Nathan & O'Shea, Richard & Smyth, Beatrice & Lens, Piet N.L. & Murphy, Jerry D., 2022. "What is the energy balance of electrofuels produced through power-to-fuel integration with biogas facilities?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Valerie Eveloy & Tesfaldet Gebreegziabher, 2018. "A Review of Projected Power-to-Gas Deployment Scenarios," Energies, MDPI, vol. 11(7), pages 1-52, July.
    13. Zoss, Toms & Dace, Elina & Blumberga, Dagnija, 2016. "Modeling a power-to-renewable methane system for an assessment of power grid balancing options in the Baltic States’ region," Applied Energy, Elsevier, vol. 170(C), pages 278-285.
    14. Sara Bellocchi & Michele Manno & Michel Noussan & Michela Vellini, 2019. "Impact of Grid-Scale Electricity Storage and Electric Vehicles on Renewable Energy Penetration: A Case Study for Italy," Energies, MDPI, vol. 12(7), pages 1-32, April.
    15. Li, Yan & Feng, Tian-tian & Liu, Li-li & Zhang, Meng-xi, 2023. "How do the electricity market and carbon market interact and achieve integrated development?--A bibliometric-based review," Energy, Elsevier, vol. 265(C).
    16. Daraei, Mahsa & Campana, Pietro Elia & Thorin, Eva, 2020. "Power-to-hydrogen storage integrated with rooftop photovoltaic systems and combined heat and power plants," Applied Energy, Elsevier, vol. 276(C).
    17. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    18. Ádám Sleisz & Dániel Divényi & Beáta Polgári & Péter Sőrés & Dávid Raisz, 2022. "A Novel Cost Allocation Mechanism for Local Flexibility in the Power System with Partial Disintermediation," Energies, MDPI, vol. 15(22), pages 1-18, November.
    19. Klöckner, Kai & Letmathe, Peter, 2020. "Is the coherence of coal phase-out and electrolytic hydrogen production the golden path to effective decarbonisation?," Applied Energy, Elsevier, vol. 279(C).
    20. Martin Thema & Tobias Weidlich & Manuel Hörl & Annett Bellack & Friedemann Mörs & Florian Hackl & Matthias Kohlmayer & Jasmin Gleich & Carsten Stabenau & Thomas Trabold & Michael Neubert & Felix Ortlo, 2019. "Biological CO 2 -Methanation: An Approach to Standardization," Energies, MDPI, vol. 12(9), pages 1-32, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:143:y:2018:i:c:p:900-910. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.