IDEAS home Printed from
   My bibliography  Save this paper

Residual Load, Renewable Surplus Generation and Storage Requirements in Germany


  • Wolf-Peter Schill


We examine the effects of future renewable expansion in Germany on residual load and renewable surplus generation for policy-relevant scenarios for 2022, 2032 and 2050. We also determine the storage capacities required for taking up renewable surpluses for varying levels of accepted curtailment. Making use of extensive sensitivity analyses, our simulations show that the expansion of variable renewables leads to a strong decrease of the right-hand side of the residual load curve. Renewable surpluses generally have high peaks which only occur in very few hours of the year, whereas overall surplus energy is rather low in most scenarios analyzed. Surpluses increase substantially with growing thermal must-run requirements, decreasing biomass flexibility and decreasing load. On average, most surpluses occur around noon and in spring time. Whereas the energy of single surplus hours is often in the range of existing German pumped hydro capacities, the energy of connected surpluses is substantially larger. Using an optimization model, we find that no additional storage is required in the scenarios for 2022 and 2032 in case of free curtailment. Even restricting curtailment to only 1% of the yearly feed-in of non-dispatchable renewables would render storage investments largely obsolete under the assumption of a flexible system. In contrast, further restrictions of curtailment and a less flexible system would strongly increase storage requirements. In a flexible 2050 scenario, 10 GW of additional storage are optimal even in case of free curtailment due to larger surpluses. Importantly, minor renewable curtailment does not impede achieving the German government's renewable energy targets. We suggest avoiding renewable surpluses in the first place by making thermal generators more flexible. Afterwards, different flexibility options can be used for taking up remaining surpluses, including but not limited to power storage. Curtailment remains as a last resort. Full surplus integration by power storage will never be optimal because of the nature of surpluses shown in this paper. Future research should explore synergies and competition between different flexibility options, while not only covering the wholesale market, but also ancillary services.

Suggested Citation

  • Wolf-Peter Schill, 2013. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," Discussion Papers of DIW Berlin 1316, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1316

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    2. Rasmussen, Morten Grud & Andresen, Gorm Bruun & Greiner, Martin, 2012. "Storage and balancing synergies in a fully or highly renewable pan-European power system," Energy Policy, Elsevier, vol. 51(C), pages 642-651.
    3. Eric Borden & Wolf-Peter Schill, 2013. "Policy Efforts for the Development of Storage Technologies in the U.S. and Germany," Discussion Papers of DIW Berlin 1328, DIW Berlin, German Institute for Economic Research.
    4. Andreas Wagner, 2014. "Residual Demand Modeling and Application to Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.
    6. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
    7. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    8. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    9. Mason, I.G. & Page, S.C. & Williamson, A.G., 2013. "Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand," Energy Policy, Elsevier, vol. 60(C), pages 324-333.
    10. Lise, Wietze & van der Laan, Jeroen & Nieuwenhout, Frans & Rademaekers, Koen, 2013. "Assessment of the required share for a stable EU electricity supply until 2050," Energy Policy, Elsevier, vol. 59(C), pages 904-913.
    11. Ignacio J. Perez-Arriaga & Carlos Batlle, 2012. "Impacts of Intermittent Renewables on Electricity Generation System Operation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    12. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    13. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    14. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    15. Steffen, Bjarne & Weber, Christoph, 2013. "Efficient storage capacity in power systems with thermal and renewable generation," Energy Economics, Elsevier, vol. 36(C), pages 556-567.
    16. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    17. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    18. Esteban, Miguel & Zhang, Qi & Utama, Agya, 2012. "Estimation of the energy storage requirement of a future 100% renewable energy system in Japan," Energy Policy, Elsevier, vol. 47(C), pages 22-31.
    19. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    20. Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
    21. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    22. Ramteen Sioshansi & Paul Denholm & Thomas Jenkin, 2012. "Market and Policy Barriers to Deployment of Energy Storage," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    Full references (including those not matched with items on IDEAS)

    More about this item


    Renewable energy; Residual load; Storage; Curtailment; Germany;

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1316. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.