IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price

  • Lion Hirth

This paper provides a comprehensive discussion of the market value of variable renewable energy (VRE). The inherent variability of wind speeds and solar radiation affects the price that VRE generators receive on the market (market value). During wind and sunny times the additional electricity supply reduces the prices. Because the drop is larger with more installed capacity, the market value of VRE falls with higher penetration rate. This study aims to develop a better understanding how the market value with penetration, and how policies and prices affect the market value. Quantitative evidence is derived from a review of published studies, regression analysis of market data, and the calibrated model of the European electricity market EMMA. We find the value of wind power to fall from 110 percent of the average power price to 50-80 percent as wind penetration increases from zero to 30 percent of total electricity consumption. For solar power, similarly low values levels are reached already at 15 percent penetration. Hence, competitive large-scale renewables deployment will be more difficult to accomplish than many anticipate.• The variability of solar and wind power affects their market value.• The market value of variable renewables falls with higher penetration rates.• We quantify the reduction with market data, numerical modeling, and a lit review.• At 30% penetration, wind power is worth only 50-80% of a constant power source.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

Paper provided by European University Institute in its series RSCAS Working Papers with number 2013/36.

in new window

Date of creation: May 2013
Date of revision:
Handle: RePEc:rsc:rsceui:2013/36
Contact details of provider: Postal: Convento, Via delle Fontanelle, 19, 50014 San Domenico di Fiesole (FI) Italy
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bode, Sven, 2006. "On the impact of renewable energy support schemes on power prices," HWWI Research Papers 4-7, Hamburg Institute of International Economics (HWWI).
  2. Ramteen Sioshansi, 2011. "Increasing the Value of Wind with Energy Storage," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-30.
  3. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
  4. Timothy D. Mount, Surin Maneevitjit, Alberto J. Lamadrid, Ray D. Zimmerman, and Robert J. Thomas, 2012. "The Hidden System Costs of Wind Generation in a Deregulated Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  5. James Bushnell, 2011. "Building Blocks: Investment in Renewable and Nonrenewable Technologies," RSCAS Working Papers 2011/53, European University Institute.
  6. Martin, Brian & Diesendorf, Mark, 1983. "The economics of large-scale wind power in the UK A model of an optimally mixed CEGB electricity grid," Energy Policy, Elsevier, vol. 11(3), pages 259-266, September.
  7. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
  8. Richard Green and Nicholas Vasilakos, 2012. "Storing Wind for a Rainy Day: What Kind of Electricity Does Denmark Export?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
  9. Richard Green & Nicholas Vasilakos, 2008. "Market Behaviour with Large Amounts of Intermittent Generation," Discussion Papers 08-08, Department of Economics, University of Birmingham.
  10. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
  11. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
  12. Weigt, Hannes, 2008. "Germany’s Wind Energy: The Potential for Fossil Capacity Replacement and Cost Saving," MPRA Paper 65659, University Library of Munich, Germany.
  13. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
  14. Rathmann, M., 2007. "Do support systems for RES-E reduce EU-ETS-driven electricity prices?," Energy Policy, Elsevier, vol. 35(1), pages 342-349, January.
  15. Hirst, Eric & Hild, Jeffrey, 2004. "The Value of Wind Energy as a Function of Wind Capacity," The Electricity Journal, Elsevier, vol. 17(6), pages 11-20, July.
  16. Crew, Michael A & Fernando, Chitru S & Kleindorfer, Paul R, 1995. "The Theory of Peak-Load Pricing: A Survey," Journal of Regulatory Economics, Springer, vol. 8(3), pages 215-48, November.
  17. Unger, Thomas & Ahlgren, Erik O., 2005. "Impacts of a common green certificate market on electricity and CO2-emission markets in the Nordic countries," Energy Policy, Elsevier, vol. 33(16), pages 2152-2163, November.
  18. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2009. "Wind integration into various generation mixtures," Renewable Energy, Elsevier, vol. 34(3), pages 807-814.
  19. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
  20. Grubb, M. J., 1991. "The integration of renewable electricity sources," Energy Policy, Elsevier, vol. 19(7), pages 670-688, September.
  21. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
  22. O'Mahoney, Amy & Denny, Eleanor, 2011. "The Merit Order Effect of Wind Generation on the Irish Electricity Market," MPRA Paper 56043, University Library of Munich, Germany.
  23. Gil, Hugo A. & Gomez-Quiles, Catalina & Riquelme, Jesus, 2012. "Large-scale wind power integration and wholesale electricity trading benefits: Estimation via an ex post approach," Energy Policy, Elsevier, vol. 41(C), pages 849-859.
  24. Katzenstein, Warren & Apt, Jay, 2012. "The cost of wind power variability," Energy Policy, Elsevier, vol. 51(C), pages 233-243.
  25. MacCormack, John & Hollis, Aidan & Zareipour, Hamidreza & Rosehart, William, 2010. "The large-scale integration of wind generation: Impacts on price, reliability and dispatchable conventional suppliers," Energy Policy, Elsevier, vol. 38(7), pages 3837-3846, July.
  26. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
  27. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
  28. Twomey, Paul & Neuhoff, Karsten, 2010. "Wind power and market power in competitive markets," Energy Policy, Elsevier, vol. 38(7), pages 3198-3210, July.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:rsc:rsceui:2013/36. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RSCAS web unit)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.