IDEAS home Printed from https://ideas.repec.org/a/aen/journl/ej36-1-06.html
   My bibliography  Save this article

The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment

Author

Listed:
  • Lion Hirth

Abstract

This paper estimates the welfare-optimal market share of wind and solar power, explicitly taking into account their output variability. We present a theoretical valuation framework that consistently accounts for the impact of fluctuations over time, forecast errors, and the location of generators in the power grid on the marginal value of electricity from renewables. Then the optimal share of wind and solar power in Northwestern Europe's generation mix is estimated from a calibrated numerical model. We find the optimal long-term wind share to be 20%, three times more than today; however, we also find significant parameter uncertainty. Variability significantly impacts results: if winds were constant, the optimal share would be 60%. In addition, the effect of technological change, price shocks, and policies on the optimal share is assessed. We present and explain several surprising findings, including a negative impact of CO2 prices on optimal wind deployment.

Suggested Citation

  • Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
  • Handle: RePEc:aen:journl:ej36-1-06
    as

    Download full text from publisher

    File URL: http://www.iaee.org/en/publications/ejarticle.aspx?id=2602
    Download Restriction: Access to full text is restricted to IAEE members and subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
    2. Neuhoff, Karsten & Ehrenmann, Andreas & Butler, Lucy & Cust, Jim & Hoexter, Harriet & Keats, Kim & Kreczko, Adam & Sinden, Graham, 2008. "Space and time: Wind in an investment planning model," Energy Economics, Elsevier, vol. 30(4), pages 1990-2008, July.
    3. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    4. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    5. Erin Baker & Meredith Fowlie & Derek Lemoine & Stanley S. Reynolds, 2013. "The Economics of Solar Electricity," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 387-426, June.
    6. Richard Schmalensee, 2013. "The Performance of U.S. Wind and Solar Generating Units," NBER Working Papers 19509, National Bureau of Economic Research, Inc.
    7. Severin Borenstein, 2012. "The Private and Public Economics of Renewable Electricity Generation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 67-92, Winter.
    8. Tuohy, A. & O'Malley, M., 2011. "Pumped storage in systems with very high wind penetration," Energy Policy, Elsevier, vol. 39(4), pages 1965-1974, April.
    9. Nagl, Stephan & Fürsch, Michaela & Jägemann, Cosima & Bettzüge, Marc Oliver, 2011. "The economic value of storage in renewable power systems - the case of thermal energy storage in concentrating solar plants," EWI Working Papers 2011-8, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    10. William D. Nordhaus, 2014. "The Perils of the Learning Model for Modeling Endogenous Technological Change," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Lamont, Alan D., 2008. "Assessing the long-term system value of intermittent electric generation technologies," Energy Economics, Elsevier, vol. 30(3), pages 1208-1231, May.
    12. Richard Green, 2005. "Electricity and Markets," Oxford Review of Economic Policy, Oxford University Press, vol. 21(1), pages 67-87, Spring.
    13. Geoffrey J. Blanford, James H. Merrick, and David Young, 2014. "A Clean Energy Standard Analysis with the US-REGEN Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    14. van der Zwaan, Bob & Rivera-Tinoco, Rodrigo & Lensink, Sander & van den Oosterkamp, Paul, 2012. "Cost reductions for offshore wind power: Exploring the balance between scaling, learning and R&D," Renewable Energy, Elsevier, vol. 41(C), pages 389-393.
    15. Ben Hoen & Jason Brown & Thomas Jackson & Mark Thayer & Ryan Wiser & Peter Cappers, 2015. "Spatial Hedonic Analysis of the Effects of US Wind Energy Facilities on Surrounding Property Values," The Journal of Real Estate Finance and Economics, Springer, vol. 51(1), pages 22-51, July.
    16. Brigitte Knopf & Bjorn Bakken & Samuel Carrara & Amit Kanudia & Ilkka Keppo & Tiina Koljonen & Silvana Mima & Eva Schmid & Detlef Van Vuuren, 2013. "Transforming the European Energy System: Member States' Prospects within the EU Framework," Post-Print halshs-00936127, HAL.
    17. Hirth, Lion & Ueckerdt, Falko, 2013. "Redistribution effects of energy and climate policy: The electricity market," Energy Policy, Elsevier, vol. 62(C), pages 934-947.
    18. Francis Bessière, 1970. "The "Investment '85" Model of Electricite de France," Management Science, INFORMS, vol. 17(4), pages 192-211, December.
    19. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    20. Markus Blesl & Tom Kober & Ralf Kuder & David Bruchof, 2012. "Implications of different climate protection regimes for the EU-27 and its member states through 2050," Climate Policy, Taylor & Francis Journals, vol. 12(3), pages 301-319, May.
    21. Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
    22. Martin, Brian & Diesendorf, Mark, 1983. "The economics of large-scale wind power in the UK A model of an optimally mixed CEGB electricity grid," Energy Policy, Elsevier, vol. 11(3), pages 259-266, September.
    23. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    24. Peter O. Steiner, 1957. "Peak Loads and Efficient Pricing," The Quarterly Journal of Economics, Oxford University Press, vol. 71(4), pages 585-610.
    25. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    26. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    27. Möst, Dominik & Fichtner, Wolf, 2010. "Renewable energy sources in European energy supply and interactions with emission trading," Energy Policy, Elsevier, vol. 38(6), pages 2898-2910, June.
    28. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    29. Richard Green & Nicholas Vasilakos, 2011. "The Long-term Impact of Wind Power on Electricity Prices and Generating Capacity," Discussion Papers 11-09, Department of Economics, University of Birmingham.
    30. Lise, Wietze & Kruseman, Gideon, 2008. "Long-term price and environmental effects in a liberalised electricity market," Energy Economics, Elsevier, vol. 30(2), pages 230-248, March.
    31. Nagl, Stephan & Fürsch, Michaela & Lindenberger, Dietmar, 2012. "The costs of electricity systems with a high share of fluctuating renewables - a stochastic investment and dispatch optimization model for Europe," EWI Working Papers 2012-1, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:energy:v:128:y:2017:i:c:p:776-784 is not listed on IDEAS
    2. repec:eee:eneeco:v:65:y:2017:i:c:p:75-86 is not listed on IDEAS
    3. Huppmann, Daniel & Egging, Ruud, 2014. "Market power, fuel substitution and infrastructure – A large-scale equilibrium model of global energy markets," Energy, Elsevier, vol. 75(C), pages 483-500.
    4. Nemet, Gregory F. & O’Shaughnessy, Eric & Wiser, Ryan & Darghouth, Naïm & Barbose, Galen & Gillingham, Ken & Rai, Varun, 2017. "Characteristics of low-priced solar PV systems in the U.S," Applied Energy, Elsevier, vol. 187(C), pages 501-513.
    5. Zerrahn, Alexander & Huppmann, Daniel, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100459, Verein für Socialpolitik / German Economic Association.
    6. Schill, Wolf-Peter, 2014. "Residual load, renewable surplus generation and storage requirements in Germany," Energy Policy, Elsevier, vol. 73(C), pages 65-79.
    7. Tunç Durmaz & Aude Pommeret & Ian Ridley, 2017. "Willingness to Pay for Solar Panels and Smart Grids," Working Papers 2017.24, Fondazione Eni Enrico Mattei.
    8. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    9. repec:eee:appene:v:207:y:2017:i:c:p:208-217 is not listed on IDEAS
    10. repec:eee:renene:v:114:y:2017:i:pb:p:1333-1339 is not listed on IDEAS
    11. repec:eee:rensus:v:96:y:2018:i:c:p:440-459 is not listed on IDEAS
    12. repec:rsr:supplm:v:65:y:2017:i:8:p:19-34 is not listed on IDEAS
    13. repec:gam:jeners:v:12:y:2019:i:2:p:324-:d:199432 is not listed on IDEAS
    14. repec:eee:enepol:v:125:y:2019:i:c:p:347-357 is not listed on IDEAS
    15. René Aïd & Matteo Basei & Huyên Pham, 2017. "The coordination of centralised and distributed generation," Working Papers hal-01517165, HAL.
    16. Clemens Gerbaulet & Casimir Lorenz, 2017. "dynELMOD: A Dynamic Investment and Dispatch Model for the Future European Electricity Market," Data Documentation 88, DIW Berlin, German Institute for Economic Research.
    17. repec:eee:eneeco:v:64:y:2017:i:c:p:363-372 is not listed on IDEAS
    18. Zerrahn, Alexander & Krekel, Christian, 2015. "Sowing the Wind and Reaping the Whirlwind? The Effect of Wind Turbines on Residential Well-Being," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112956, Verein für Socialpolitik / German Economic Association.
    19. Ren'e Aid & Matteo Basei & Huy^en Pham, 2017. "The coordination of centralised and distributed generation," Papers 1705.01302, arXiv.org, revised Mar 2018.
    20. Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
    21. Goutte, Stéphane & Vassilopoulos, Philippe, 2019. "The value of flexibility in power markets," Energy Policy, Elsevier, vol. 125(C), pages 347-357.

    More about this item

    JEL classification:

    • F0 - International Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aen:journl:ej36-1-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Williams). General contact details of provider: http://edirc.repec.org/data/iaeeeea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.