IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i6p2898-2910.html
   My bibliography  Save this article

Renewable energy sources in European energy supply and interactions with emission trading

Author

Listed:
  • Möst, Dominik
  • Fichtner, Wolf

Abstract

This paper presents a model-based approach, which allows to determine the optimised structure and operation of the EU-15 electricity supply under different political and economic framework conditions, with a focus on the integration of renewable energy sources for electricity generation (RES-E) in the EU-15 countries. The approach is designed to take into account the characteristics of power production from both renewable and conventional sources, including the technological and economic characteristics of existing plants as well as those of future capacity expansion options. Beyond that, fuel supply structures are modelled, as well as the international markets for power and CO2-certificates with their restrictions. Thus, a profound evaluation of the exploitation of mid-term renewable potentials and an assessment of the market penetration of the various renewable power generation technologies under the (normative) premise of a cost-optimised evolution of the power system becomes possible. Results show that a promotion of renewable energies reduces the scarcity of CO2-emission allowances and thus lowers marginal costs of CO2 reduction up to 30% in 2030. Despite the higher overall costs, a diversification of the energy resource base by RES-E use is observed, as primarily natural gas and nuclear fuels are replaced.

Suggested Citation

  • Möst, Dominik & Fichtner, Wolf, 2010. "Renewable energy sources in European energy supply and interactions with emission trading," Energy Policy, Elsevier, vol. 38(6), pages 2898-2910, June.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:6:p:2898-2910
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00029-7
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Möst, Dominik & Perlwitz, Holger, 2009. "Prospects of gas supply until 2020 in Europe and its relevance for the power sector in the context of emission trading," Energy, Elsevier, vol. 34(10), pages 1510-1522.
    2. Finon, Dominique, 1974. "Optimisation model for the French energy sector," Energy Policy, Elsevier, vol. 2(2), pages 136-151, June.
    3. Yiannis Antoniou, Pantelis Capros, 1999. "Decision support system framework of the PRIMES energy model of the European Commission," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 12(1/2/3/4/5), pages 92-119.
    4. Rosen, Johannes & Tietze-Stöckinger, Ingela & Rentz, Otto, 2007. "Model-based analysis of effects from large-scale wind power production," Energy, Elsevier, vol. 32(4), pages 575-583.
    5. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    6. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xydis, G., 2012. "Development of an integrated methodology for the energy needs of a major urban city: The case study of Athens, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6705-6716.
    2. repec:dui:wpaper:1305 is not listed on IDEAS
    3. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    4. Pina, André & Silva, Carlos & Ferrão, Paulo, 2011. "Modeling hourly electricity dynamics for policy making in long-term scenarios," Energy Policy, Elsevier, vol. 39(9), pages 4692-4702, September.
    5. Iychettira, Kaveri K. & Hakvoort, Rudi A. & Linares, Pedro & de Jeu, Rob, 2017. "Towards a comprehensive policy for electricity from renewable energy: Designing for social welfare," Applied Energy, Elsevier, vol. 187(C), pages 228-242.
    6. Rauner, Sebastian & Eichhorn, Marcus & Thrän, Daniela, 2016. "The spatial dimension of the power system: Investigating hot spots of Smart Renewable Power Provision," Applied Energy, Elsevier, vol. 184(C), pages 1038-1050.
    7. Laurijssen, Jobien & Faaij, André & Worrell, Ernst, 2012. "Energy conversion strategies in the European paper industry – A case study in three countries," Applied Energy, Elsevier, vol. 98(C), pages 102-113.
    8. Lili Li, 2014. "Empirical Research on the Relationship between China Export and New Energy Consumption," International Journal of Energy Economics and Policy, Econjournals, vol. 4(2), pages 229-237.
    9. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2687-2695.
    10. Lion Hirth, 2015. "The Optimal Share of Variable Renewables: How the Variability of Wind and Solar Power affects their Welfare-optimal Deployment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    11. Welsch, Manuel & Deane, Paul & Howells, Mark & Ó Gallachóir, Brian & Rogan, Fionn & Bazilian, Morgan & Rogner, Hans-Holger, 2014. "Incorporating flexibility requirements into long-term energy system models – A case study on high levels of renewable electricity penetration in Ireland," Applied Energy, Elsevier, vol. 135(C), pages 600-615.
    12. Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
    13. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
    14. repec:eee:enepol:v:106:y:2017:i:c:p:22-31 is not listed on IDEAS
    15. Christoph Weber & Philip Vogel, 2014. "Contingent certificate allocation rules and incentives for power plant investment and disinvestment," Journal of Regulatory Economics, Springer, vol. 46(3), pages 292-317, December.
    16. Spiecker, Stephan & Weber, Christoph, 2014. "The future of the European electricity system and the impact of fluctuating renewable energy – A scenario analysis," Energy Policy, Elsevier, vol. 65(C), pages 185-197.
    17. Spiecker, Stephan & Vogel, Philip & Weber, Christoph, 2013. "Evaluating interconnector investments in the north European electricity system considering fluctuating wind power penetration," Energy Economics, Elsevier, vol. 37(C), pages 114-127.
    18. Jägemann, Cosima, 2012. "Decarbonizing Europe’s power sector by 2050 - Analyzing the implications of alternative decarbonization pathways," EWI Working Papers 2012-13, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    19. repec:eee:enepol:v:106:y:2017:i:c:p:169-182 is not listed on IDEAS
    20. Heinrichs, Heidi & Jochem, Patrick & Fichtner, Wolf, 2014. "Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector," Energy, Elsevier, vol. 69(C), pages 708-720.
    21. repec:eee:appene:v:196:y:2017:i:c:p:100-117 is not listed on IDEAS
    22. Tsilingiridis, G. & Sidiropoulos, C. & Pentaliotis, A., 2011. "Reduction of air pollutant emissions using renewable energy sources for power generation in Cyprus," Renewable Energy, Elsevier, vol. 36(12), pages 3292-3296.
    23. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    24. Tolón-Becerra, A. & Lastra-Bravo, X.B. & Steenberghen, T. & Debecker, B., 2011. "Current situation, trends and potential of renewable energy in Flanders," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4400-4409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:6:p:2898-2910. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.