IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Effectiveness of setting cumulative carbon dioxide emissions reduction targets

Listed author(s):
  • Chicco, Gianfranco
  • Stephenson, Paule M.
Registered author(s):

    In current policies, targets for GHG (greenhouse gas) and more specifically CO2 emissions are set on the basis of annual emissions. However, warming effects associated with global average temperature rise depend on accumulation of GHG in the atmosphere. Due to the quantity and longevity of CO2 in the atmosphere there is increasing awareness that taking into account cumulative CO2 emissions in defining targets for restraining the growth of CO2 emissions would be particularly effective. The notion of effectiveness is linked to measuring the degree of achievement of the objectives. Considering CO2 emissions targets set over a few decades, the path of emissions reduction contains relevant information that cannot be captured by a classical measure like the distance to the target.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211007420
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Energy.

    Volume (Year): 42 (2012)
    Issue (Month): 1 ()
    Pages: 19-31

    as
    in new window

    Handle: RePEc:eee:energy:v:42:y:2012:i:1:p:19-31
    DOI: 10.1016/j.energy.2011.11.024
    Contact details of provider: Web page: http://www.journals.elsevier.com/energy

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Murphy, Rose & Jaccard, Mark, 2011. "Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US," Energy Policy, Elsevier, vol. 39(11), pages 7146-7155.
    2. Chicco, Gianfranco & Mancarella, Pierluigi, 2009. "Distributed multi-generation: A comprehensive view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 535-551, April.
    3. Zhang, ZhongXiang & Folmer, Henk, 1998. "Economic modelling approaches to cost estimates for the control of carbon dioxide emissions1," Energy Economics, Elsevier, vol. 20(1), pages 101-120, February.
    4. Paule Stephenson & Jonathan Boston, 2010. "Climate change, equity and the relevance of European 'effort-sharing' for global mitigation efforts," Climate Policy, Taylor & Francis Journals, vol. 10(1), pages 3-16, January.
    5. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    6. van der Zwaan, Bob & Gerlagh, Reyer, 2006. "Climate sensitivity uncertainty and the necessity to transform global energy supply," Energy, Elsevier, vol. 31(14), pages 2571-2587.
    7. Möst, Dominik & Perlwitz, Holger, 2009. "Prospects of gas supply until 2020 in Europe and its relevance for the power sector in the context of emission trading," Energy, Elsevier, vol. 34(10), pages 1510-1522.
    8. Praetorius, Barbara & Schumacher, Katja, 2009. "Greenhouse gas mitigation in a carbon constrained world: The role of carbon capture and storage," Energy Policy, Elsevier, vol. 37(12), pages 5081-5093, December.
    9. Grohnheit, Poul Erik, 1991. "Economic interpretation of the EFOM model," Energy Economics, Elsevier, vol. 13(2), pages 143-152, April.
    10. Gottinger, Hans W., 1998. "Greenhouse Gas Economics and Computable General Equilibrium," Journal of Policy Modeling, Elsevier, vol. 20(5), pages 537-580, October.
    11. Lund, Henrik, 2006. "The Kyoto mechanisms and technological innovation," Energy, Elsevier, vol. 31(13), pages 2325-2332.
    12. Grubb, Michael, 1993. "Policy modelling for climate change : The missing models," Energy Policy, Elsevier, vol. 21(3), pages 203-208, March.
    13. Chicco, Gianfranco & Mancarella, Pierluigi, 2007. "Trigeneration primary energy saving evaluation for energy planning and policy development," Energy Policy, Elsevier, vol. 35(12), pages 6132-6144, December.
    14. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    15. Kawase, Reina & Matsuoka, Yuzuru & Fujino, Junichi, 2006. "Decomposition analysis of CO2 emission in long-term climate stabilization scenarios," Energy Policy, Elsevier, vol. 34(15), pages 2113-2122, October.
    16. Konidari, Popi & Mavrakis, Dimitrios, 2007. "A multi-criteria evaluation method for climate change mitigation policy instruments," Energy Policy, Elsevier, vol. 35(12), pages 6235-6257, December.
    17. Cédric Philibert & Jonathan Pershing, 2001. "Considering the options: climate targets for all countries," Climate Policy, Taylor & Francis Journals, vol. 1(2), pages 211-227, June.
    18. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    19. Macintosh, Andrew, 2010. "Keeping warming within the 2 °C limit after Copenhagen," Energy Policy, Elsevier, vol. 38(6), pages 2964-2975, June.
    20. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    21. Bell, Michelle L. & Hobbs, Benjamin F. & Ellis, Hugh, 2003. "The use of multi-criteria decision-making methods in the integrated assessment of climate change: implications for IA practitioners," Socio-Economic Planning Sciences, Elsevier, vol. 37(4), pages 289-316, December.
    22. Leonardo Barreto, Socrates Kypreos, 2002. "Multi-regional technological learning in the energysystems MARKAL model," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 17(3), pages 189-213.
    23. Anderson, Kevin & Bows, Alice & Mander, Sarah, 2008. "From long-term targets to cumulative emission pathways: Reframing UK climate policy," Energy Policy, Elsevier, vol. 36(10), pages 3714-3722, October.
    24. Manne, Alan S. & Stephan, Gunter, 2005. "Global climate change and the equity–efficiency puzzle," Energy, Elsevier, vol. 30(14), pages 2525-2536.
    25. den Elzen, Michel & Höhne, Niklas & van Vliet, Jasper, 2009. "Analysing comparable greenhouse gas mitigation efforts for Annex I countries," Energy Policy, Elsevier, vol. 37(10), pages 4114-4131, October.
    26. Jaccard, Mark & Roop, Joe, 1990. "The ISTUM-PC model : Trial application to the British Columbia pulp and paper industry," Energy Economics, Elsevier, vol. 12(3), pages 185-196, July.
    27. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    28. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    29. Schiffer, Hans-Wilhelm, 2008. "WEC energy policy scenarios to 2050," Energy Policy, Elsevier, vol. 36(7), pages 2464-2470, July.
    30. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:19-31. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.