IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v33y2011i5p1035-1047.html
   My bibliography  Save this article

General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis

Author

Listed:
  • Lanz, Bruno
  • Rausch, Sebastian

Abstract

Electricity generation is a major contributor to carbon dioxide emissions, and abatement in this sector is a key determinant of economy-wide regulation costs. The complexity of an integrated representation of economic and electricity systems makes simplifying assumptions appealing, but there is no evidence in the literature on how important the pitfalls may be. The aim of this paper is to provide such evidence, drawing on numerical simulations from a suite of partial and general equilibrium models that share common technological features and are calibrated to the same benchmark data. We report two basic findings. First, general equilibrium inter-sectoral effects of an economy-wide carbon policy are large. It follows that assessing abatement potentials and price changes in the electricity sector with a partial equilibrium Marshallian demand can only provide a crude approximation of the complex demand-side interactions. Second, we provide evidence that widely used top-down representations of electricity technologies produce fuel substitution patterns that are inconsistent with bottom-up cost data. This supports the view that the parametrization of substitution possibilities with highly aggregated production functions is difficult to validate empirically. The overall picture that emerges is one of large quantitative and even qualitative differences, highlighting the role of key structural assumptions in the interpretation of climate policy projections.

Suggested Citation

  • Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
  • Handle: RePEc:eee:eneeco:v:33:y:2011:i:5:p:1035-1047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988311001253
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rausch Sebastian & Metcalf Gilbert E. & Reilly John M & Paltsev Sergey, 2010. "Distributional Implications of Alternative U.S. Greenhouse Gas Control Measures," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(2), pages 1-46, July.
    2. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    3. James B. Bushnell & Erin T. Mansur & Celeste Saravia, 2008. "Vertical Arrangements, Market Structure, and Competition: An Analysis of Restructured US Electricity Markets," American Economic Review, American Economic Association, vol. 98(1), pages 237-266, March.
    4. Bovenberg, A Lans & Goulder, Lawrence H, 1996. "Optimal Environmental Taxation in the Presence of Other Taxes: General-Equilibrium Analyses," American Economic Review, American Economic Association, vol. 86(4), pages 985-1000, September.
    5. Kenneth C. Hoffman & Dale W. Jorgenson, 1977. "Economic and Technological Models for Evaluation of Energy Policy," Bell Journal of Economics, The RAND Corporation, vol. 8(2), pages 444-466, Autumn.
    6. Böhringer, Christoph & Lange, Andreas & Rutherford, Thomas F., 2014. "Optimal emission pricing in the presence of international spillovers: Decomposing leakage and terms-of-trade motives," Journal of Public Economics, Elsevier, vol. 110(C), pages 101-111.
    7. Goulder, Lawrence H. & Hafstead, Marc A.C. & Dworsky, Michael, 2010. "Impacts of alternative emissions allowance allocation methods under a federal cap-and-trade program," Journal of Environmental Economics and Management, Elsevier, vol. 60(3), pages 161-181, November.
    8. Stavins, Robert N., 2008. "A Meaningful U.S. Cap-and-Trade System to Address Climate Change," Climate Change Modelling and Policy Working Papers 44469, Fondazione Eni Enrico Mattei (FEEM).
    9. Strachan, Neil & Kannan, Ramachandran, 2008. "Hybrid modelling of long-term carbon reduction scenarios for the UK," Energy Economics, Elsevier, vol. 30(6), pages 2947-2963, November.
    10. Rutherford, Thomas F., 1995. "Extension of GAMS for complementarity problems arising in applied economic analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 19(8), pages 1299-1324, November.
    11. Andreas Schafer and Henry D. Jacoby, 2006. "Experiments with a Hybrid CGE-MARKAL Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 171-177.
    12. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    13. Wing, Ian Sue, 2006. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions," Energy Policy, Elsevier, vol. 34(18), pages 3847-3869, December.
    14. Perroni, Carlo & Rutherford, Thomas F., 1995. "Regular flexibility of nested CES functions," European Economic Review, Elsevier, vol. 39(2), pages 335-343, February.
    15. Bovenberg, A.L. & Goulder, L.H., 1996. "Optimal environmental taxation in the presence of other taxes : General equilibrium analyses," Other publications TiSEM 5d4b7517-c5c8-4ef6-ab76-3, Tilburg University, School of Economics and Management.
    16. Jean Charles Hourcade & Mark Jaccard & Chris Bataille & Frédéric Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges," Post-Print halshs-00471234, HAL.
    17. Joskow, Paul L., 2005. "Transmission policy in the United States," Utilities Policy, Elsevier, vol. 13(2), pages 95-115, June.
    18. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    19. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    20. Jean-Charles Hourcade, Mark Jaccard, Chris Bataille, and Frederic Ghersi, 2006. "Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 1-12.
    21. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    22. Messner, Sabine & Schrattenholzer, Leo, 2000. "MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively," Energy, Elsevier, vol. 25(3), pages 267-282.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    2. Rausch, Sebastian & Mowers, Matthew, 2014. "Distributional and efficiency impacts of clean and renewable energy standards for electricity," Resource and Energy Economics, Elsevier, vol. 36(2), pages 556-585.
    3. Helgesen, Per Ivar & Tomasgard, Asgeir, 2018. "From linking to integration of energy system models and computational general equilibrium models – Effects on equilibria and convergence," Energy, Elsevier, vol. 159(C), pages 1218-1233.
    4. Milad Maralani & Milad Maralani & Basil Sharp & Golbon Zakeri, 2016. "The Potential Impact of Industrial Energy Savings on The New Zealand Economy," EcoMod2016 9308, EcoMod.
    5. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    6. Bruno Lanz and Sebastian Rausch, 2016. "Emissions Trading in the Presence of Price-Regulated Polluting Firms: How Costly Are Free Allowances?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Andersen, Kristoffer S. & Termansen, Lars B. & Gargiulo, Maurizio & Ó Gallachóirc, Brian P., 2019. "Bridging the gap using energy services: Demonstrating a novel framework for soft linking top-down and bottom-up models," Energy, Elsevier, vol. 169(C), pages 277-293.
    8. Fortes, Patrícia & Pereira, Rui & Pereira, Alfredo & Seixas, Júlia, 2014. "Integrated technological-economic modeling platform for energy and climate policy analysis," Energy, Elsevier, vol. 73(C), pages 716-730.
    9. Xavier Labandeira, Pedro Linares and Miguel Rodriguez, 2009. "An Integrated Approach to Simulate the impacts of Carbon Emissions Trading Schemes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    10. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
    11. Labriet, Maryse & Drouet, Laurent & Vielle, Marc & Loulou, Richard & Kanudia, Amit & Haurie, Alain, 2015. "Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models," Climate Change and Sustainable Development 199946, Fondazione Eni Enrico Mattei (FEEM).
    12. Martin T. Ross, Patrick T. Sullivan, Allen A. Fawcett, and Brooks M. Depro, 2014. "Investigating Technology Options for Climate Policies: Differentiated Roles in ADAGE," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    13. Lanz, Bruno & Rausch, Sebastian, 2012. "Cap-and-Trade Climate Policies with Price-Regulated Firms: How Costly Are Free Allowances?," Conference papers 332267, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    14. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    15. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    16. Abrell, Jan & Rausch, Sebastian, 2016. "Cross-country electricity trade, renewable energy and European transmission infrastructure policy," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 87-113.
    17. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    18. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.
    19. Böhringer, Christoph & Rutherford, Thomos F., 2009. "Integrated assessment of energy policies: Decomposing top-down and bottom-up," Journal of Economic Dynamics and Control, Elsevier, vol. 33(9), pages 1648-1661, September.
    20. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:33:y:2011:i:5:p:1035-1047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.