IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v163y2016icp211-221.html
   My bibliography  Save this article

Cutting CO2 intensity targets of interprovincial emissions trading in China

Author

Listed:
  • Chang, Kai
  • Chang, Hao

Abstract

This paper proposes the allocation of CO2 emissions increment quotas and carbon intensity reduction burdens based on information entropy method. Allocating emissions increment quotas and cutting emissions intensity target should consider each province’s objective weights of some valuable factors, such as carbon emissions reduction capacity, responsibility, potential and energy efficiency under interprovincial emissions trading system in China. Those provinces with better economic level, heavier cumulative CO2 emissions, stronger industrial carbon intensity and greater energy consumers may undertake greater shares of carbon intensity reduction targets during 2014–2020. All provinces in China may achieve a surprising reduction of CO2 emissions increment quotas during 2014–2020 with an increase of national emissions intensity reduction targets, and then have to increase greater burdens of emissions intensity reduction compared with the 2013 level.

Suggested Citation

  • Chang, Kai & Chang, Hao, 2016. "Cutting CO2 intensity targets of interprovincial emissions trading in China," Applied Energy, Elsevier, vol. 163(C), pages 211-221.
  • Handle: RePEc:eee:appene:v:163:y:2016:i:c:p:211-221
    DOI: 10.1016/j.apenergy.2015.10.146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915013884
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dan Wei & Adam Rose, 2009. "Interregional Sharing of Energy Conservation Targets in China: Efficiency and Equity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 81-112.
    2. Hao, Yu & Liao, Hua & Wei, Yi-Ming, 2015. "Is China’s carbon reduction target allocation reasonable? An analysis based on carbon intensity convergence," Applied Energy, Elsevier, vol. 142(C), pages 229-239.
    3. Yu-Bong Lai, 2008. "Auctions or grandfathering: the political economy of tradable emission permits," Public Choice, Springer, vol. 136(1), pages 181-200, July.
    4. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    5. Golombek, Rolf & Kittelsen, Sverre A.C. & Rosendahl, Knut Einar, 2013. "Price and welfare effects of emission quota allocation," Energy Economics, Elsevier, vol. 36(C), pages 568-580.
    6. Ian Mackenzie & Nick Hanley & Tatiana Kornienko, 2008. "The optimal initial allocation of pollution permits: a relative performance approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(3), pages 265-282, March.
    7. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    8. Wei, Yi-Ming & Liu, Lan-Cui & Fan, Ying & Wu, Gang, 2007. "The impact of lifestyle on energy use and CO2 emission: An empirical analysis of China's residents," Energy Policy, Elsevier, vol. 35(1), pages 247-257, January.
    9. Piplani, Rajesh & Wetjens, Dennis, 2007. "Evaluation of entropy-based dispatching in flexible manufacturing systems," European Journal of Operational Research, Elsevier, vol. 176(1), pages 317-331, January.
    10. Bohringer, Christoph & Lange, Andreas, 2005. "On the design of optimal grandfathering schemes for emission allowances," European Economic Review, Elsevier, vol. 49(8), pages 2041-2055, November.
    11. Chicco, Gianfranco & Stephenson, Paule M., 2012. "Effectiveness of setting cumulative carbon dioxide emissions reduction targets," Energy, Elsevier, vol. 42(1), pages 19-31.
    12. Park, Hojeong & Hong, Won Kyung, 2014. "Korea׳s emission trading scheme and policy design issues to achieve market-efficiency and abatement targets," Energy Policy, Elsevier, vol. 75(C), pages 73-83.
    13. N. Anger & B. Brouns & J. Onigkeit, 2009. "Linking the EU emissions trading scheme: economic implications of allowance allocation and global carbon constraints," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 14(5), pages 379-398, June.
    14. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    15. Shuiabi, Eyas & Thomson, Vince & Bhuiyan, Nadia, 2005. "Entropy as a measure of operational flexibility," European Journal of Operational Research, Elsevier, vol. 165(3), pages 696-707, September.
    16. Yanan Chen & Sheng Lin, 2015. "Decomposition and allocation of energy-related carbon dioxide emission allowance over provinces of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1893-1909, April.
    17. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    18. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
    19. Li, Ke & Lin, Boqiang, 2015. "Metafroniter energy efficiency with CO2 emissions and its convergence analysis for China," Energy Economics, Elsevier, vol. 48(C), pages 230-241.
    20. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
    21. A. Denny Ellerman & Ian Sue Wing, 2003. "Absolute versus intensity-based emission caps," Climate Policy, Taylor & Francis Journals, vol. 3(sup2), pages 7-20, December.
    22. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    23. Veronika Grimm & Lyuba Ilieva, 2013. "An experiment on emissions trading: the effect of different allocation mechanisms," Journal of Regulatory Economics, Springer, vol. 44(3), pages 308-338, December.
    24. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    25. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    26. Clarke-Sather, Afton & Qu, Jiansheng & Wang, Qin & Zeng, Jingjing & Li, Yan, 2011. "Carbon inequality at the sub-national scale: A case study of provincial-level inequality in CO2 emissions in China 1997-2007," Energy Policy, Elsevier, vol. 39(9), pages 5420-5428, September.
    27. Lund, Peter, 2007. "Impacts of EU carbon emission trade directive on energy-intensive industries -- Indicative micro-economic analyses," Ecological Economics, Elsevier, vol. 63(4), pages 799-806, September.
    28. Lennox, James A. & van Nieuwkoop, Renger, 2010. "Output-based allocations and revenue recycling: Implications for the New Zealand Emissions Trading Scheme," Energy Policy, Elsevier, vol. 38(12), pages 7861-7872, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:eee:eneeco:v:67:y:2017:i:c:p:213-223 is not listed on IDEAS
    2. repec:eee:enepol:v:130:y:2019:i:c:p:418-428 is not listed on IDEAS
    3. repec:eee:appene:v:211:y:2018:i:c:p:1021-1029 is not listed on IDEAS
    4. Fang, Guochang & Tian, Lixin & Fu, Min & Sun, Mei & Du, Ruijin & Liu, Menghe, 2017. "Investigating carbon tax pilot in YRD urban agglomerations—Analysis of a novel ESER system with carbon tax constraints and its application," Applied Energy, Elsevier, vol. 194(C), pages 635-647.
    5. repec:eee:energy:v:144:y:2018:i:c:p:887-902 is not listed on IDEAS
    6. repec:eee:appene:v:233-234:y:2019:i::p:196-207 is not listed on IDEAS
    7. Haibo Guo & Ying Liu & Wen-Shao Chang & Yu Shao & Cheng Sun, 2017. "Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China," Sustainability, MDPI, Open Access Journal, vol. 9(2), pages 1-17, February.
    8. repec:eee:appene:v:211:y:2018:i:c:p:1039-1049 is not listed on IDEAS
    9. repec:eee:rensus:v:98:y:2018:i:c:p:415-425 is not listed on IDEAS
    10. repec:eee:appene:v:204:y:2017:i:c:p:531-543 is not listed on IDEAS
    11. repec:eee:rensus:v:82:y:2018:i:p3:p:4121-4131 is not listed on IDEAS
    12. repec:gam:jsusta:v:10:y:2018:i:11:p:4244-:d:183502 is not listed on IDEAS
    13. repec:eee:appene:v:220:y:2018:i:c:p:657-671 is not listed on IDEAS
    14. repec:eee:energy:v:143:y:2018:i:c:p:732-745 is not listed on IDEAS
    15. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    16. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    17. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    18. repec:eee:appene:v:239:y:2019:i:c:p:157-170 is not listed on IDEAS
    19. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    20. repec:eee:appene:v:230:y:2018:i:c:p:232-240 is not listed on IDEAS
    21. repec:gam:jsusta:v:10:y:2018:i:11:p:4210-:d:182988 is not listed on IDEAS
    22. Chang, Kai & Zhang, Chao & Chang, Hao, 2016. "Emissions reduction allocation and economic welfare estimation through interregional emissions trading in China: Evidence from efficiency and equity," Energy, Elsevier, vol. 113(C), pages 1125-1135.
    23. repec:eee:appene:v:204:y:2017:i:c:p:509-524 is not listed on IDEAS
    24. Zhang, Wei & Li, Ke & Zhou, Dequn & Zhang, Wenrui & Gao, Hui, 2016. "Decomposition of intensity of energy-related CO2 emission in Chinese provinces using the LMDI method," Energy Policy, Elsevier, vol. 92(C), pages 369-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:163:y:2016:i:c:p:211-221. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.