IDEAS home Printed from https://ideas.repec.org/p/biw/wpaper/22.html
   My bibliography  Save this paper

Exploring the regional characteristics of inter-provincial CO2 emissions in China:An improved fuzzy clustering analysis based on particle swarm optimization

Author

Listed:
  • Shiwei Yu
  • Yi-Ming Wei

    () (Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology)

  • Jing-Li Fan
  • Xian Zhang
  • Ke Wang

Abstract

The better to explore the regional characteristics of inter-provincial CO2 emissions and the rational distribution of the reduction of emission intensity reduction in China, this paper proposes an improved PSO-FCM clustering algorithm. This method can obtain the optimal cluster number and membership grade values by utilizing the global capacity of Particle Swarm Optimization (PSO) on Fuzzy C-means (FCM). The clustering results of CO2 emissions indicate that the 30 provinces of China are divided into five clusters and each has its own significant characteristics. Compared with other clustering methods, the results of PSO-FCM are more explanatory. The most important indicators affecting regional emission characteristics are CO2 emission intensity and per capita emissions, whereas CO2 emission per unit of energy is not obvious in clustering. Furthermore, some policy recommendations on setting emission reduction targets according to the emission characteristics of different clusters are made.

Suggested Citation

  • Shiwei Yu & Yi-Ming Wei & Jing-Li Fan & Xian Zhang & Ke Wang, 2011. "Exploring the regional characteristics of inter-provincial CO2 emissions in China:An improved fuzzy clustering analysis based on particle swarm optimization," CEEP-BIT Working Papers 22, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  • Handle: RePEc:biw:wpaper:22
    as

    Download full text from publisher

    File URL: http://ceep.bit.edu.cn/docs/2018-10/20181011134956007870.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gómez, M. & López, A. & Jurado, F., 2010. "Optimal placement and sizing from standpoint of the investor of Photovoltaics Grid-Connected Systems using Binary Particle Swarm Optimization," Applied Energy, Elsevier, vol. 87(6), pages 1911-1918, June.
    2. Unler, Alper & Murat, Alper, 2010. "A discrete particle swarm optimization method for feature selection in binary classification problems," European Journal of Operational Research, Elsevier, vol. 206(3), pages 528-539, November.
    3. Atkins, Martin J. & Morrison, Andrew S. & Walmsley, Michael R.W., 2010. "Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector," Applied Energy, Elsevier, vol. 87(3), pages 982-987, March.
    4. Sharma, Susan Sunila, 2011. "Determinants of carbon dioxide emissions: Empirical evidence from 69 countries," Applied Energy, Elsevier, vol. 88(1), pages 376-382, January.
    5. Wang, Run & Liu, Wenjuan & Xiao, Lishan & Liu, Jian & Kao, William, 2011. "Path towards achieving of China's 2020 carbon emission reduction target--A discussion of low-carbon energy policies at province level," Energy Policy, Elsevier, vol. 39(5), pages 2740-2747, May.
    6. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    7. Feng, Kuishuang & Hubacek, Klaus & Guan, Dabo, 2009. "Lifestyles, technology and CO2 emissions in China: A regional comparative analysis," Ecological Economics, Elsevier, vol. 69(1), pages 145-154, November.
    8. Clarke-Sather, Afton & Qu, Jiansheng & Wang, Qin & Zeng, Jingjing & Li, Yan, 2011. "Carbon inequality at the sub-national scale: A case study of provincial-level inequality in CO2 emissions in China 1997-2007," Energy Policy, Elsevier, vol. 39(9), pages 5420-5428, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Fuzzy C-means cluster; carbon emission; characteristics; mitigation policy;

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:biw:wpaper:22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhi-Fu Mi). General contact details of provider: http://edirc.repec.org/data/cebitcn.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.