IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp1254-1265.html
   My bibliography  Save this article

Emissions trading systems and social equity: A CGE assessment for China

Author

Listed:
  • Huang, Hai
  • Roland-Holst, David
  • Springer, Cecilia
  • Lin, Jiang
  • Cai, Wenjia
  • Wang, Can

Abstract

Carbon dioxide emissions trading systems (ETS) are an important market-based mitigation strategy and have been applied in many regions. This study evaluates the potential for a national ETS in China. Using a dynamic computable general equilibrium (CGE) model with detailed representations of economic activity, emissions, and income distribution, we examine alternative mitigation policies from now until 2050. Based on statistical and survey data, we disaggregate the labor and household sectors and simulate the impacts of ETS policies on the incomes of different household groups. We find that ETS has the potential to reconcile China’s goals for sustained, inclusive, and low-carbon economic growth. Results show some key findings. First, the number of unemployed people in energy-intensive industries such as coal and construction will continue to increase; by 2050, employment in the coal industry will decline by 75%. Second, if the scope of the carbon market extends to all industries in China, carbon market revenues will continue to increase, reaching a maximum of 2278 billion yuan ($336 billion) in 2042 to become the world's largest carbon market. Third, the distribution of benefits from the national ETS can help achieve greater social equity. By comparing different distribution policies, we find that the combination of targeted subsidies for unemployed coal workers and direct household subsidies based on proportional per capita will reduce the social income gap to the greatest extent compared with other scenarios. By 2050, this distribution policy will reduce the Gini coefficient in China by 10% compared to the Business as Usual (BAU) scenario.

Suggested Citation

  • Huang, Hai & Roland-Holst, David & Springer, Cecilia & Lin, Jiang & Cai, Wenjia & Wang, Can, 2019. "Emissions trading systems and social equity: A CGE assessment for China," Applied Energy, Elsevier, vol. 235(C), pages 1254-1265.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1254-1265
    DOI: 10.1016/j.apenergy.2018.11.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317628
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Jing Jing & Ye, Bin & Ma, Xiao Ming, 2014. "The construction of Shenzhen׳s carbon emission trading scheme," Energy Policy, Elsevier, vol. 75(C), pages 17-21.
    2. Cramton, Peter & Kerr, Suzi, 2002. "Tradeable carbon permit auctions: How and why to auction not grandfather," Energy Policy, Elsevier, vol. 30(4), pages 333-345, March.
    3. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    4. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    5. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    6. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options," Energy, Elsevier, vol. 35(9), pages 3921-3931.
    7. Cameron Hepburn & Michael Grubb & Karsten Neuhoff & Felix Matthes & Maximilien Tse, 2006. "Auctioning of EU ETS phase II allowances: how and why?," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 137-160, January.
    8. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    9. Zhang, Da & Karplus, Valerie J. & Cassisa, Cyril & Zhang, Xiliang, 2014. "Emissions trading in China: Progress and prospects," Energy Policy, Elsevier, vol. 75(C), pages 9-16.
    10. Li, Ji Feng & Wang, Xin & Zhang, Ya Xiong & Kou, Qin, 2014. "The economic impact of carbon pricing with regulated electricity prices in China—An application of a computable general equilibrium approach," Energy Policy, Elsevier, vol. 75(C), pages 46-56.
    11. Bohringer, Christoph & Lange, Andreas, 2005. "On the design of optimal grandfathering schemes for emission allowances," European Economic Review, Elsevier, vol. 49(8), pages 2041-2055, November.
    12. Mu, Yaqian & Cai, Wenjia & Evans, Samuel & Wang, Can & Roland-Holst, David, 2018. "Employment impacts of renewable energy policies in China: A decomposition analysis based on a CGE modeling framework," Applied Energy, Elsevier, vol. 210(C), pages 256-267.
    13. Fan, Ying & Wu, Jie & Xia, Yan & Liu, Jing-Yu, 2016. "How will a nationwide carbon market affect regional economies and efficiency of CO2 emission reduction in China?," China Economic Review, Elsevier, vol. 38(C), pages 151-166.
    14. Liu, Yu & Lu, Yingying, 2015. "The Economic impact of different carbon tax revenue recycling schemes in China: A model-based scenario analysis," Applied Energy, Elsevier, vol. 141(C), pages 96-105.
    15. John Pezzey & Andrew Park, 1998. "Reflections on the Double Dividend Debate," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 539-555, April.
    16. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    17. Lin Yang & Yunfei Yao & Jiutian Zhang & Xian Zhang & Karl McAlinden, 2016. "A CGE analysis of carbon market impact on CO 2 emission reduction in China: a technology-led approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1107-1128, March.
    18. Regina Betz & Karoline Rogge & Joachim Schleich, 2006. "EU emissions trading: an early analysis of national allocation plans for 2008-2012," Climate Policy, Taylor & Francis Journals, vol. 6(4), pages 361-394, July.
    19. Burtraw, Dallas & McLaughlin, David & Szambelan, Sarah Jo, 2012. "California’s New Gold: A Primer on the Use of Allowance Value Created under the CO2 Cap-and-Trade Program," RFF Working Paper Series dp-12-23, Resources for the Future.
    20. Diewert, W E, 1971. "An Application of the Shephard Duality Theorem: A Generalized Leontief Production Function," Journal of Political Economy, University of Chicago Press, vol. 79(3), pages 481-507, May-June.
    21. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Auction design for the allocation of carbon emission allowances: uniform or discriminatory price?," MPRA Paper 112210, University Library of Munich, Germany.
    22. Lin Yang & Yunfei Yao & Jiutian Zhang & Xian Zhang & Karl J. McAlinden, 2016. "A CGE analysis of carbon market impact on CO2 emission reduction in China: a technology-led approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1107-1128, March.
    23. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    24. Jeffrey C. Peters & Thomas W. Hertel, 2016. "Matrix balancing with unknown total costs: preserving economic relationships in the electric power sector," Economic Systems Research, Taylor & Francis Journals, vol. 28(1), pages 1-20, March.
    25. Hong, Taehoon & Koo, Choongwan & Lee, Sungug, 2014. "Benchmarks as a tool for free allocation through comparison with similar projects: Focused on multi-family housing complex," Applied Energy, Elsevier, vol. 114(C), pages 663-675.
    26. Zhi-Fu Mi & Yi-Ming Wei & Bing Wang & Jing Meng & Zhu Liu & Yuli Shan & Jingru Liu & Dabo Guan, 2017. "Socioeconomic impact assessment of China's CO2 emissions peak prior to 2030," CEEP-BIT Working Papers 103, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    27. Yue-Jun Zhang & Jun-Fang Hao, 2015. "The allocation of carbon emission intensity reduction target by 2020 among provinces in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 921-937, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Libo & Zhang, Shuaishuai & Qian, Haoqi, 2022. "Distributional effects of China's National Emissions Trading Scheme with an emphasis on sectoral coverage and revenue recycling," Energy Economics, Elsevier, vol. 105(C).
    2. Yidan Chen & Jiang Lin & David Roland-Holst & Xu Liu & Can Wang, 2023. "Declining Renewable Costs, Emissions Trading, and Economic Growth: China’s Power System at the Crossroads," Energies, MDPI, vol. 16(2), pages 1-14, January.
    3. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).
    4. Liu, Xianmei & Peng, Rui & Bai, Caiquan & Chi, Yuanying & Liu, Yuxiang, 2023. "Economic cost, energy transition, and pollutant mitigation: The effect of China's different mitigation pathways toward carbon neutrality," Energy, Elsevier, vol. 275(C).
    5. An, Kangxin & Zhang, Shihui & Huang, Hai & Liu, Yuan & Cai, Wenjia & Wang, Can, 2021. "Socioeconomic impacts of household participation in emission trading scheme: A Computable General Equilibrium-based case study," Applied Energy, Elsevier, vol. 288(C).
    6. Mardones, Cristian & Ortega, José, 2021. "Are the emissions trading systems’ simulations generated with a computable general equilibrium model sensitive to the nested production structure?," Applied Energy, Elsevier, vol. 298(C).
    7. Pan, Yuling & Dong, Feng, 2022. "Design of energy use rights trading policy from the perspective of energy vulnerability," Energy Policy, Elsevier, vol. 160(C).
    8. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    9. Hübler, Michael & Wiese, Malin & Braun, Marius & Damster, Johannes, 2024. "The distributional effects of CO2 pricing at home and at the border on German income groups," Resource and Energy Economics, Elsevier, vol. 77(C).
    10. Wang, M. & Zhou, P., 2022. "A two-step auction-refund allocation rule of CO2 emission permits," Energy Economics, Elsevier, vol. 113(C).
    11. Qunli Wu & Hongjie Zhang, 2019. "Research on Optimization Allocation Scheme of Initial Carbon Emission Quota from the Perspective of Welfare Effect," Energies, MDPI, vol. 12(11), pages 1-27, June.
    12. Lingling Jiang & Simin Shen, 2024. "Opportunity or Curse: Can Green Technology Innovation Stabilize Employment?," Sustainability, MDPI, vol. 16(13), pages 1-16, July.
    13. Xin-gang, Zhao & Shuran, Hu & Hui, Wang & Haowei, Chen & Wenbin, Zhang & Wenjie, Lu, 2024. "Energy, economic, and environmental impacts of electricity market-oriented reform and the carbon emissions trading: A recursive dynamic CGE model in China," Energy, Elsevier, vol. 298(C).
    14. Bin Xiong & Qi Sui, 2023. "Does Carbon Emissions Trading Policy Improve Inclusive Green Resilience in Cities? Evidence from China," Sustainability, MDPI, vol. 15(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    2. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    3. Yang, Lin & Li, Fengyu & Zhang, Xian, 2016. "Chinese companies’ awareness and perceptions of the Emissions Trading Scheme (ETS): Evidence from a national survey in China," Energy Policy, Elsevier, vol. 98(C), pages 254-265.
    4. Mu, Yaqian & Evans, Samuel & Wang, Can & Cai, Wenjia, 2018. "How will sectoral coverage affect the efficiency of an emissions trading system? A CGE-based case study of China," Applied Energy, Elsevier, vol. 227(C), pages 403-414.
    5. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    6. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    7. Zhang, Yue-Jun & Wang, Ao-Dong & Tan, Weiping, 2015. "The impact of China's carbon allowance allocation rules on the product prices and emission reduction behaviors of ETS-covered enterprises," Energy Policy, Elsevier, vol. 86(C), pages 176-185.
    8. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    9. Zhao, Xin-gang & Jiang, Gui-wu & Nie, Dan & Chen, Hao, 2016. "How to improve the market efficiency of carbon trading: A perspective of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1229-1245.
    10. Baochen Yang & Chuanze Liu & Zehao Gou & Jiacheng Man & Yunpeng Su, 2018. "How Will Policies of China’s CO 2 ETS Affect its Carbon Price: Evidence from Chinese Pilot Regions," Sustainability, MDPI, vol. 10(3), pages 1-26, February.
    11. Xia, Yan & Tang, Zhipeng, 2017. "The impacts of emissions accounting methods on an imperfect competitive carbon trading market," Energy, Elsevier, vol. 119(C), pages 67-76.
    12. Xiong, Ling & Shen, Bo & Qi, Shaozhou & Price, Lynn & Ye, Bin, 2017. "The allowance mechanism of China’s carbon trading pilots: A comparative analysis with schemes in EU and California," Applied Energy, Elsevier, vol. 185(P2), pages 1849-1859.
    13. Liu, Yu & Tan, Xiu-Jie & Yu, Yang & Qi, Shao-Zhou, 2017. "Assessment of impacts of Hubei Pilot emission trading schemes in China – A CGE-analysis using TermCO2 model," Applied Energy, Elsevier, vol. 189(C), pages 762-769.
    14. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    15. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    16. Tan, Qinliang & Ding, Yihong & Ye, Qi & Mei, Shufan & Zhang, Yimei & Wei, Yongmei, 2019. "Optimization and evaluation of a dispatch model for an integrated wind-photovoltaic-thermal power system based on dynamic carbon emissions trading," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    18. Munnings, Clayton & Morgenstern, Richard D. & Wang, Zhongmin & Liu, Xu, 2016. "Assessing the design of three carbon trading pilot programs in China," Energy Policy, Elsevier, vol. 96(C), pages 688-699.
    19. Zhang, Cheng & Wang, Qunwei & Shi, Dan & Li, Pengfei & Cai, Wanhuan, 2016. "Scenario-based potential effects of carbon trading in China: An integrated approach," Applied Energy, Elsevier, vol. 182(C), pages 177-190.
    20. Qinliang Tan & Yihong Ding & Yimei Zhang, 2017. "Optimization Model of an Efficient Collaborative Power Dispatching System for Carbon Emissions Trading in China," Energies, MDPI, vol. 10(9), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1254-1265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.