IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v81y2015icp152-169.html
   My bibliography  Save this article

Carbon emissions trading scheme exploration in China: A multi-agent-based model

Author

Listed:
  • Tang, Ling
  • Wu, Jiaqian
  • Yu, Lean
  • Bao, Qin

Abstract

To develop a low-carbon economy, China launched seven pilot programs for carbon emissions trading (CET) in 2011 and plans to establish a nationwide CET mechanism in 2015. This paper formulated a multi-agent-based model to investigate the impacts of different CET designs in order to find the most appropriate one for China. The proposed bottom-up model includes all main economic agents in a general equilibrium framework. The simulation results indicate that (1) CET would effectively reduce carbon emissions, with a certain negative impact on the economy, (2) as for allowance allocation, the grandfathering rule is relatively moderate, while the benchmarking rule is more aggressive, (3) as for the carbon price, when the price level in the secondary CET market is regulated to be around RMB 40 per metric ton, a satisfactory emission mitigation effect can be obtained, (4) the penalty rate is suggested to be carefully designed to balance the economy development and mitigation effect, and (5) subsidy policy for energy technology improvement can effectively reduce carbon emissions without an additional negative impact on the economy. The results also indicate that the proposed novel model is a promising tool for CET policy making and analyses.

Suggested Citation

  • Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
  • Handle: RePEc:eee:enepol:v:81:y:2015:i:c:p:152-169
    DOI: 10.1016/j.enpol.2015.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515001056
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salle, Isabelle & Yıldızoğlu, Murat & Sénégas, Marc-Alexandre, 2013. "Inflation targeting in a learning economy: An ABM perspective," Economic Modelling, Elsevier, vol. 34(C), pages 114-128.
    2. Szabo, Laszlo & Hidalgo, Ignacio & Ciscar, Juan Carlos & Soria, Antonio, 2006. "CO2 emission trading within the European Union and Annex B countries: the cement industry case," Energy Policy, Elsevier, vol. 34(1), pages 72-87, January.
    3. Rong, Aiying & Lahdelma, Risto, 2007. "CO2 emissions trading planning in combined heat and power production via multi-period stochastic optimization," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1874-1895, February.
    4. Bao, Qin & Tang, Ling & Zhang, ZhongXiang & Wang, Shouyang, 2013. "Impacts of border carbon adjustments on China's sectoral emissions: Simulations with a dynamic computable general equilibrium model," China Economic Review, Elsevier, vol. 24(C), pages 77-94.
    5. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    6. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    7. Farrahi Moghaddam, Reza & Farrahi Moghaddam, Fereydoun & Cheriet, Mohamed, 2013. "A modified GHG intensity indicator: Toward a sustainable global economy based on a carbon border tax and emissions trading," Energy Policy, Elsevier, vol. 57(C), pages 363-380.
    8. Cong, Rong-Gang & Wei, Yi-Ming, 2010. "Potential impact of (CET) carbon emissions trading on China’s power sector: A perspective from different allowance allocation options," Energy, Elsevier, vol. 35(9), pages 3921-3931.
    9. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    10. Hermeling, Claudia & Löschel, Andreas & Mennel, Tim, 2013. "A new robustness analysis for climate policy evaluations: A CGE application for the EU 2020 targets," Energy Policy, Elsevier, vol. 55(C), pages 27-35.
    11. Schleich, Joachim & Cremer, Clemens, 2007. "Using benchmarking for the primary allocation of EU allowances - an application to the German power sector," Working Papers "Sustainability and Innovation" S6/2007, Fraunhofer Institute for Systems and Innovation Research (ISI).
    12. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    13. Cong, Rong-Gang & Wei, Yi-Ming, 2012. "Experimental comparison of impact of auction format on carbon allowance market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4148-4156.
    14. Li, Y.P. & Huang, G.H. & Li, M.W., 2014. "An integrated optimization modeling approach for planning emission trading and clean-energy development under uncertainty," Renewable Energy, Elsevier, vol. 62(C), pages 31-46.
    15. Lee, Cheng F. & Lin, Sue J. & Lewis, Charles, 2008. "Analysis of the impacts of combining carbon taxation and emission trading on different industry sectors," Energy Policy, Elsevier, vol. 36(2), pages 722-729, February.
    16. Zetterberg, Lars, 2014. "Benchmarking in the European Union Emissions Trading System: Abatement incentives," Energy Economics, Elsevier, vol. 43(C), pages 218-224.
    17. Anger, Annela, 2010. "Including aviation in the European emissions trading scheme: Impacts on the industry, CO2 emissions and macroeconomic activity in the EU," Journal of Air Transport Management, Elsevier, vol. 16(2), pages 100-105.
    18. Raufer, Roger & Li, Shaoyi, 2009. "Emissions trading in China: A conceptual ‘leapfrog’ approach?," Energy, Elsevier, vol. 34(7), pages 904-912.
    19. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    20. Dormady, Noah C., 2014. "Carbon auctions, energy markets & market power: An experimental analysis," Energy Economics, Elsevier, vol. 44(C), pages 468-482.
    21. Sichao, Kan & Yamamoto, Hiromi & Yamaji, Kenji, 2010. "Evaluation of CO2 free electricity trading market in Japan by multi-agent simulations," Energy Policy, Elsevier, vol. 38(7), pages 3309-3319, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:81:y:2015:i:c:p:152-169. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.