IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v125y2016icp47-59.html
   My bibliography  Save this article

Carbon dioxide emissions allocation: A review

Author

Listed:
  • Zhou, P.
  • Wang, M.

Abstract

Carbon dioxide (CO2) emissions allocation plays a fundamental role in determining reduction responsibility at economy level or emission permits at firm level. Past decades have seen the development and applications of various methods for CO2 emissions allocation. This paper provides a literature review of CO2 emissions allocation with emphasis on the evolution of allocation methods used. It begins with a summary of the most popular allocation principles and criteria that lay a foundation for the development of allocation methods. We then classify the existing allocation methods into four groups, namely indicator, optimization, game theoretic and hybrid approaches. The main features and findings of past studies are identified and summarized. While the fairness principle prevails in earlier studies, the efficiency principle has been found to receive increasing attention recently. We also present a comparison of the empirical results based on ten popular indicator methods to show how indicator choice affects the allocation results. Issues related to selecting appropriate methods in CO2 emissions allocation are finally discussed. Further research may be carried out to strike a balance between fairness and efficiency so that the allocation results become more widely acceptable and economically feasible.

Suggested Citation

  • Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
  • Handle: RePEc:eee:ecolec:v:125:y:2016:i:c:p:47-59
    DOI: 10.1016/j.ecolecon.2016.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800915305395
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rose, Adam, 1990. "Reducing conflict in global warming policy : The potential of equity as a unifying principle," Energy Policy, Elsevier, vol. 18(10), pages 927-935, December.
    2. Bohringer, Christoph & Jochem, Patrick E.P., 2007. "Measuring the immeasurable -- A survey of sustainability indices," Ecological Economics, Elsevier, vol. 63(1), pages 1-8, June.
    3. Luzzati, T. & Gucciardi, G., 2015. "A non-simplistic approach to composite indicators and rankings: an illustration by comparing the sustainability of the EU Countries," Ecological Economics, Elsevier, vol. 113(C), pages 25-38.
    4. Karsten Neuhoff & Kim Keats Martinez & Misato Sato, 2006. "Allocation, incentives and distortions: the impact of EU ETS emissions allowance allocations to the electricity sector," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 73-91, January.
    5. Andries Hof & Michel Elzen & Detlef Vuuren, 2010. "Including adaptation costs and climate change damages in evaluating post-2012 burden-sharing regimes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(1), pages 19-40, January.
    6. Grübler, Arnulf & Fujii, Yasumasa, 1991. "Inter-generational and spatial equity issues of carbon accounts," Energy, Elsevier, vol. 16(11), pages 1397-1416.
    7. MacKenzie, Ian A. & Hanley, Nick & Kornienko, Tatiana, 2009. "Using contests to allocate pollution rights," Energy Policy, Elsevier, vol. 37(7), pages 2798-2806, July.
    8. Cramton, Peter & Kerr, Suzi, 2002. "Tradeable carbon permit auctions: How and why to auction not grandfather," Energy Policy, Elsevier, vol. 30(4), pages 333-345, March.
    9. Cantore, Nicola & Padilla, Emilio, 2010. "Equality and CO2 emissions distribution in climate change integrated assessment modelling," Energy, Elsevier, vol. 35(1), pages 298-313.
    10. Adam Rose & Zhong Zhang, 2004. "Interregional burden-sharing of greenhouse gas mitigation in the United States," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 9(4), pages 477-500, October.
    11. Jos Sijm & Jaap Jansen & Asbj�rn Torvanger, 2001. "Differentiation of mitigation commitments: the multi-sector convergence approach," Climate Policy, Taylor & Francis Journals, vol. 1(4), pages 481-497, December.
    12. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    13. Lozano, S. & Villa, G. & Brännlund, R., 2009. "Centralised reallocation of emission permits using DEA," European Journal of Operational Research, Elsevier, vol. 193(3), pages 752-760, March.
    14. Ridgley, Mark A, 1996. "Fair sharing of greenhouse gas burdens," Energy Policy, Elsevier, vol. 24(6), pages 517-529, June.
    15. Rolf Färe & Shawna Grosskopf & Dimitri Margaritis & William Weber, 2012. "Technological change and timing reductions in greenhouse gas emissions," Journal of Productivity Analysis, Springer, vol. 37(3), pages 205-216, June.
    16. González-Eguino, Mikel, 2011. "The importance of the design of market-based instruments for CO2 mitigation: An AGE analysis for Spain," Ecological Economics, Elsevier, vol. 70(12), pages 2292-2302.
    17. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Comparing aggregating methods for constructing the composite environmental index: An objective measure," Ecological Economics, Elsevier, vol. 59(3), pages 305-311, September.
    18. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    19. Ebert, Udo & Welsch, Heinz, 2004. "Meaningful environmental indices: a social choice approach," Journal of Environmental Economics and Management, Elsevier, vol. 47(2), pages 270-283, March.
    20. den Elzen, Michel & Lucas, Paul & Vuuren, Detlef van, 2005. "Abatement costs of post-Kyoto climate regimes," Energy Policy, Elsevier, vol. 33(16), pages 2138-2151, November.
    21. Böhringer, Christoph & Helm, Carsten, 2008. "On the fair division of greenhouse gas abatement cost," Resource and Energy Economics, Elsevier, vol. 30(2), pages 260-276, May.
    22. Kverndokk, S., 1992. "Tradeable CO2 Emission Permits: Initial Distribution as a Justice Problem," Memorandum 23/1992, Oslo University, Department of Economics.
    23. Edmonds, Jae & Wise, Marshall & Barns, David W, 1995. "Carbon coalitions : The cost and effectiveness of energy agreements to alter trajectories of atmospheric carbon dioxide emissions," Energy Policy, Elsevier, vol. 23(4-5), pages 309-335.
    24. Picazo-Tadeo, Andrés J. & Castillo-Giménez, Juana & Beltrán-Esteve, Mercedes, 2014. "An intertemporal approach to measuring environmental performance with directional distance functions: Greenhouse gas emissions in the European Union," Ecological Economics, Elsevier, vol. 100(C), pages 173-182.
    25. Hatefi, S.M. & Torabi, S.A., 2010. "A common weight MCDA-DEA approach to construct composite indicators," Ecological Economics, Elsevier, vol. 70(1), pages 114-120, November.
    26. Ferng, Jiun-Jiun, 2003. "Allocating the responsibility of CO2 over-emissions from the perspectives of benefit principle and ecological deficit," Ecological Economics, Elsevier, vol. 46(1), pages 121-141, August.
    27. Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2004. "Equity in international greenhouse gases abatement scenarios: A multicriteria approach," European Journal of Operational Research, Elsevier, vol. 153(2), pages 489-505, March.
    28. Lasse Ringius & Asbjørn Torvanger & Arild Underdal, 2002. "Burden Sharing and Fairness Principles in International Climate Policy," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 2(1), pages 1-22, March.
    29. Lenzen, Manfred & Murray, Joy & Sack, Fabian & Wiedmann, Thomas, 2007. "Shared producer and consumer responsibility -- Theory and practice," Ecological Economics, Elsevier, vol. 61(1), pages 27-42, February.
    30. Michel Elzen & Marcel Berk & Paul Lucas & Patrick Criqui & Alban Kitous, 2006. "Multi-Stage: A Rule-Based Evolution of Future Commitments under the Climate Change Convention," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 6(1), pages 1-28, March.
    31. Heleen Groenenberg & Kornelis Blok & Jeroen van der Sluijs, 2004. "Global Triptych: a bottom-up approach for the differentiation of commitments under the Climate Convention," Climate Policy, Taylor & Francis Journals, vol. 4(2), pages 153-175, June.
    32. Andries F. Hof & Michel G.J. Den Elzen, 2010. "The effect of different historical emissions datasets on emission targets of the sectoral mitigation approach Triptych," Climate Policy, Taylor & Francis Journals, vol. 10(6), pages 684-704, November.
    33. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    34. Asbjørn Torvanger & Lasse Ringius, 2002. "Criteria for Evaluation of Burden-sharing Rules in International Climate Policy," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 2(3), pages 221-235, September.
    35. Ekholm, Tommi & Soimakallio, Sampo & Moltmann, Sara & Höhne, Niklas & Syri, Sanna & Savolainen, Ilkka, 2010. "Effort sharing in ambitious, global climate change mitigation scenarios," Energy Policy, Elsevier, vol. 38(4), pages 1797-1810, April.
    36. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    37. Christoph Böhringer & Andreas Löschel, 2005. "Climate Policy Beyond Kyoto: Quo Vadis?," Kyklos, Wiley Blackwell, vol. 58(4), pages 467-493, November.
    38. Welsch, Heinz, 1993. "A CO2 agreement proposal with flexible quotas," Energy Policy, Elsevier, vol. 21(7), pages 748-756, July.
    39. Floridi, Matteo & Pagni, Simone & Falorni, Simone & Luzzati, Tommaso, 2011. "An exercise in composite indicators construction: Assessing the sustainability of Italian regions," Ecological Economics, Elsevier, vol. 70(8), pages 1440-1447, June.
    40. Ringius, Lasse & Torvanger, Asbjorn & Holtsmark, Bjart, 1998. "Can multi-criteria rules fairly distribute climate burdens?: OECD results from three burden sharing rules," Energy Policy, Elsevier, vol. 26(10), pages 777-793, August.
    41. Ian Mackenzie & Nick Hanley & Tatiana Kornienko, 2008. "The optimal initial allocation of pollution permits: a relative performance approach," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(3), pages 265-282, March.
    42. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    43. Niklas H�hne & Michel den Elzen & Martin Weiss, 2006. "Common but differentiated convergence (CDC): a new conceptual approach to long-term climate policy," Climate Policy, Taylor & Francis Journals, vol. 6(2), pages 181-199, March.
    44. Wiedmann, Thomas, 2009. "A review of recent multi-region input-output models used for consumption-based emission and resource accounting," Ecological Economics, Elsevier, vol. 69(2), pages 211-222, December.
    45. Zhou, P. & Zhang, L. & Zhou, D.Q. & Xia, W.J., 2013. "Modeling economic performance of interprovincial CO2 emission reduction quota trading in China," Applied Energy, Elsevier, vol. 112(C), pages 1518-1528.
    46. Bastianoni, Simone & Pulselli, Federico Maria & Tiezzi, Enzo, 2004. "The problem of assigning responsibility for greenhouse gas emissions," Ecological Economics, Elsevier, vol. 49(3), pages 253-257, July.
    47. Damien Demailly & Philippe Quirion, 2006. "CO 2 abatement, competitiveness and leakage in the European cement industry under the EU ETS: grandfathering versus output-based allocation," Climate Policy, Taylor & Francis Journals, vol. 6(1), pages 93-113, January.
    48. Schmidt, Robert C. & Heitzig, Jobst, 2014. "Carbon leakage: Grandfathering as an incentive device to avert firm relocation," Journal of Environmental Economics and Management, Elsevier, vol. 67(2), pages 209-223.
    49. Bohringer, Christoph & Welsch, Heinz, 2004. "Contraction and Convergence of carbon emissions: an intertemporal multi-region CGE analysis," Journal of Policy Modeling, Elsevier, vol. 26(1), pages 21-39, January.
    50. Rose, Adam & Stevens, Brandt, 1993. "The efficiency and equity of marketable permits for CO2 emissions," Resource and Energy Economics, Elsevier, vol. 15(1), pages 117-146, March.
    51. den Elzen, Michel & Höhne, Niklas & Moltmann, Sara, 2008. "The Triptych approach revisited: A staged sectoral approach for climate mitigation," Energy Policy, Elsevier, vol. 36(3), pages 1107-1124, March.
    52. Damien Demailly & Philippe Quirion, 2006. "CO2 abatement, competitiveness and leakage in the European cement industry under the EU ETS: Grandfathering vs. output-based allocation," Post-Print halshs-00639327, HAL.
    53. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
    54. Miketa, Asami & Schrattenholzer, Leo, 2006. "Equity implications of two burden-sharing rules for stabilizing greenhouse-gas concentrations," Energy Policy, Elsevier, vol. 34(7), pages 877-891, May.
    55. Persson, Tobias A. & Azar, Christian & Lindgren, Kristian, 2006. "Allocation of CO2 emission permits--Economic incentives for emission reductions in developing countries," Energy Policy, Elsevier, vol. 34(14), pages 1889-1899, September.
    56. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    57. Park, Ji-Won & Kim, Chae Un & Isard, Walter, 2012. "Permit allocation in emissions trading using the Boltzmann distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4883-4890.
    58. Groenenberg, Heleen & Phylipsen, Dian & Blok, Kornelis, 2001. "Differentiating commitments world wide: global differentiation of GHG emissions reductions based on the Triptych approach--a preliminary assessment," Energy Policy, Elsevier, vol. 29(12), pages 1007-1030, October.
    59. Christoph Bohringer & Heinz Welsch, 2006. "Burden sharing in a greenhouse: egalitarianism and sovereignty reconciled," Applied Economics, Taylor & Francis Journals, vol. 38(9), pages 981-996.
    60. van Ruijven, Bas J. & Weitzel, Matthias & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & Peterson, Sonja & Narita, Daiju, 2012. "Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches," Energy Policy, Elsevier, vol. 46(C), pages 116-134.
    61. Leimbach, Marian, 2003. "Equity and carbon emissions trading: a model analysis," Energy Policy, Elsevier, vol. 31(10), pages 1033-1044, August.
    62. Asbjørn Torvanger & Odd Godal, 2004. "An Evaluation of Pre-Kyoto Differentiation Proposals for National Greenhouse Gas Abatement Targets," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 4(1), pages 65-91, March.
    63. Peter Bohm & Bjorn Larsen, 1994. "Fairness in a tradeable-permit treaty for carbon emissions reductions in Europe and the former Soviet Union," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 4(3), pages 219-239, June.
    64. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    65. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    66. Larsen, Bjorn & Shah, Anwar, 1994. "Global Tradeable Carbon Permits, Participation Incentives, and Transfers," Oxford Economic Papers, Oxford University Press, vol. 46(0), pages 841-856, Supplemen.
    67. Zhou, P. & Ang, B.W. & Poh, K.L., 2007. "A mathematical programming approach to constructing composite indicators," Ecological Economics, Elsevier, vol. 62(2), pages 291-297, April.
    68. DeCanio, Stephen J., 2009. "The political economy of global carbon emissions reductions," Ecological Economics, Elsevier, vol. 68(3), pages 915-924, January.
    69. Cui, Lian-Biao & Fan, Ying & Zhu, Lei & Bi, Qing-Hua, 2014. "How will the emissions trading scheme save cost for achieving China’s 2020 carbon intensity reduction target?," Applied Energy, Elsevier, vol. 136(C), pages 1043-1052.
    70. McKibbin, Warwick J. & Wilcoxen, Peter J., 2009. "Uncertainty and climate change policy design," Journal of Policy Modeling, Elsevier, vol. 31(3), pages 463-477, May.
    71. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    72. Fr�d�ric Ghersi & Jean-Charles Hourcade & Patrick Criqui, 2003. "Viable responses to the equity-responsibility dilemma: a consequentialist view," Climate Policy, Taylor & Francis Journals, vol. 3(sup1), pages 115-133, November.
    73. M. Germain & V. van Steenberghe, 2003. "Constraining Equitable Allocations of Tradable CO 2 Emission Quotas by Acceptability," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 26(3), pages 469-492, November.
    74. Bohringer, Christoph & Lange, Andreas, 2005. "On the design of optimal grandfathering schemes for emission allowances," European Economic Review, Elsevier, vol. 49(8), pages 2041-2055, November.
    75. Neumayer, Eric, 2000. "In defence of historical accountability for greenhouse gas emissions," Ecological Economics, Elsevier, vol. 33(2), pages 185-192, May.
    76. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    77. Pan, Xunzhang & Teng, Fei & Ha, Yuejiao & Wang, Gehua, 2014. "Equitable Access to Sustainable Development: Based on the comparative study of carbon emission rights allocation schemes," Applied Energy, Elsevier, vol. 130(C), pages 632-640.
    78. Bosetti, Valentina & Buchner, Barbara, 2009. "Data Envelopment Analysis of different climate policy scenarios," Ecological Economics, Elsevier, vol. 68(5), pages 1340-1354, March.
    79. Adam Rose & Brandt Stevens & Jae Edmonds & Marshall Wise, 1998. "International Equity and Differentiation in Global Warming Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 25-51, July.
    80. Pang, Rui-zhi & Deng, Zhong-qi & Chiu, Yung-ho, 2015. "Pareto improvement through a reallocation of carbon emission quotas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 419-430.
    81. Frédéric Ghersi & Jean Charles Hourcade & Patrick Criqui, 2003. "Viable responses to the equity-responsability dilemma, a consequentialist view," Post-Print halshs-00177901, HAL.
    82. Feng, Chenpeng & Chu, Feng & Ding, Jingjing & Bi, Gongbing & Liang, Liang, 2015. "Carbon Emissions Abatement (CEA) allocation and compensation schemes based on DEA," Omega, Elsevier, vol. 53(C), pages 78-89.
    83. Skott, Peter & Davis, Leila, 2013. "Distributional biases in the analysis of climate change," Ecological Economics, Elsevier, vol. 85(C), pages 188-197.
    84. Jensen, Jesper & Rasmussen, Tobias N., 2000. "Allocation of CO2 Emissions Permits: A General Equilibrium Analysis of Policy Instruments," Journal of Environmental Economics and Management, Elsevier, vol. 40(2), pages 111-136, September.
    85. P. Zhou & B. Ang, 2009. "Comparing MCDA Aggregation Methods in Constructing Composite Indicators Using the Shannon-Spearman Measure," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 94(1), pages 83-96, October.
    86. Marcel M. Berk & Michel G.J. den Elzen, 2001. "Options for differentiation of future commitments in climate policy: how to realise timely participation to meet stringent climate goals?," Climate Policy, Taylor & Francis Journals, vol. 1(4), pages 465-480, December.
    87. Wei, Yi-Ming & Wang, Lu & Liao, Hua & Wang, Ke & Murty, Tad & Yan, Jinyue, 2014. "Responsibility accounting in carbon allocation: A global perspective," Applied Energy, Elsevier, vol. 130(C), pages 122-133.
    88. Harald Winkler & Randall Spalding-Fecher & Lwazikazi Tyani, 2002. "Comparing developing countries under potential carbon allocation schemes," Climate Policy, Taylor & Francis Journals, vol. 2(4), pages 303-318, December.
    89. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    90. Janssen, Marco & Rotmans, Jan, 1995. "Allocation of fossil CO2 emission rights quantifying cultural perspectives," Ecological Economics, Elsevier, vol. 13(1), pages 65-79, April.
    91. Ji-Won Park & Chae Un Kim & Walter Isard, 2011. "Permit Allocation in Emissions Trading using the Boltzmann Distribution," Papers 1108.2305, arXiv.org, revised Mar 2012.
    92. Phylipsen, G J M & Bode, J W & Blok, K & Merkus, H & Metz, B, 1998. "A Triptych sectoral approach to burden differentiation; GHG emissions in the European bubble," Energy Policy, Elsevier, vol. 26(12), pages 929-943, October.
    93. Edwards, T. Huw. & Hutton, John P., 2001. "Allocation of carbon permits within a country: a general equilibrium analysis of the United Kingdom," Energy Economics, Elsevier, vol. 23(4), pages 371-386, July.
    94. Filar, J.A. & Gaertner, P.S., 1997. "A regional allocation of world CO2 emission reductions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 43(3), pages 269-275.
    95. Yue-Jun Zhang & Jun-Fang Hao, 2015. "The allocation of carbon emission intensity reduction target by 2020 among provinces in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 921-937, November.
    96. Gupta, Sujata & M Bhandari, Preety, 1999. "An effective allocation criterion for CO2 emissions," Energy Policy, Elsevier, vol. 27(12), pages 727-736, November.
    97. Heleen Groenenberg & Kornelis Blok, 2002. "Benchmark-based emission allocation in a cap-and-trade system," Climate Policy, Taylor & Francis Journals, vol. 2(1), pages 105-109, March.
    98. Michel den Elzen & Malte Meinshausen, 2006. "Meeting the EU 2°C climate target: global and regional emission implications," Climate Policy, Taylor & Francis Journals, vol. 6(5), pages 545-564, September.
    99. Munksgaard, Jesper & Pedersen, Klaus Alsted, 2001. "CO2 accounts for open economies: producer or consumer responsibility?," Energy Policy, Elsevier, vol. 29(4), pages 327-334, March.
    100. Yang, Zili & Sirianni, Philip, 2010. "Balancing contemporary fairness and historical justice: A 'quasi-equitable' proposal for GHG mitigations," Energy Economics, Elsevier, vol. 32(5), pages 1121-1130, September.
    101. Lennox, James A. & van Nieuwkoop, Renger, 2010. "Output-based allocations and revenue recycling: Implications for the New Zealand Emissions Trading Scheme," Energy Policy, Elsevier, vol. 38(12), pages 7861-7872, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Carbon dioxide (CO2); Emissions allocation; Indicator; Fairness; Efficiency;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:125:y:2016:i:c:p:47-59. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.