IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v79y2015i2p921-937.html
   My bibliography  Save this article

The allocation of carbon emission intensity reduction target by 2020 among provinces in China

Author

Listed:
  • Yue-Jun Zhang
  • Jun-Fang Hao

Abstract

According to the combined principles of fairness and efficiency, a comprehensive allocating indicator system is developed, and the TOPSIS approach is applied to allocate China’s 40–45 % carbon emission intensity (carbon emission per unit of GDP) reduction target by 2020. The results indicate that, first of all, the unequally weighted indicator system outperforms the equally weighted one according to regional developing situation in China; and the most important indicator affecting the allowance allocation is carbon reduction responsibility, followed by future development right and emission reduction efficiency. Second, China’s carbon emission intensity should be cut, but its absolute carbon emission volume may inevitably increase in the future due to the continuous economic growth, and we confirm that the western provinces may take the highest shares to increase carbon emissions, followed by the central, northeast and eastern provinces. Finally, in order to achieve the national target of carbon emission intensity reduction, the northeast and eastern provinces require reducing carbon emission intensity significantly from 2013 to 2020, while the central and western provinces should be given more developing room. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Yue-Jun Zhang & Jun-Fang Hao, 2015. "The allocation of carbon emission intensity reduction target by 2020 among provinces in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 921-937, November.
  • Handle: RePEc:spr:nathaz:v:79:y:2015:i:2:p:921-937
    DOI: 10.1007/s11069-015-1883-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1883-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1883-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    2. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    3. Harald Winkler & Randall Spalding-Fecher & Lwazikazi Tyani, 2002. "Comparing developing countries under potential carbon allocation schemes," Climate Policy, Taylor & Francis Journals, vol. 2(4), pages 303-318, December.
    4. Miketa, Asami & Schrattenholzer, Leo, 2006. "Equity implications of two burden-sharing rules for stabilizing greenhouse-gas concentrations," Energy Policy, Elsevier, vol. 34(7), pages 877-891, May.
    5. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    6. Janssen, Marco & Rotmans, Jan, 1995. "Allocation of fossil CO2 emission rights quantifying cultural perspectives," Ecological Economics, Elsevier, vol. 13(1), pages 65-79, April.
    7. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    8. Ozturk, Ilhan & Aslan, Alper & Kalyoncu, Huseyin, 2010. "Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries," Energy Policy, Elsevier, vol. 38(8), pages 4422-4428, August.
    9. Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2004. "Equity in international greenhouse gases abatement scenarios: A multicriteria approach," European Journal of Operational Research, Elsevier, vol. 153(2), pages 489-505, March.
    10. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    11. Benestad, Olav, 1994. "Energy needs and CO2 emissions Constructing a formula for just distributions," Energy Policy, Elsevier, vol. 22(9), pages 725-734, September.
    12. Persson, Tobias A. & Azar, Christian & Lindgren, Kristian, 2006. "Allocation of CO2 emission permits--Economic incentives for emission reductions in developing countries," Energy Policy, Elsevier, vol. 34(14), pages 1889-1899, September.
    13. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    14. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    15. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    16. Rong, Fang, 2010. "Understanding developing country stances on post-2012 climate change negotiations: Comparative analysis of Brazil, China, India, Mexico, and South Africa," Energy Policy, Elsevier, vol. 38(8), pages 4582-4591, August.
    17. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
    18. Adam Rose & Brandt Stevens & Jae Edmonds & Marshall Wise, 1998. "International Equity and Differentiation in Global Warming Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 12(1), pages 25-51, July.
    19. Kram, Tom & Hill, Douglas, 1996. "A multinational model for CO2 reduction : Defining boundaries of future CO2 emissions in nine countries," Energy Policy, Elsevier, vol. 24(1), pages 39-51, January.
    20. Gupta, Sujata & M Bhandari, Preety, 1999. "An effective allocation criterion for CO2 emissions," Energy Policy, Elsevier, vol. 27(12), pages 727-736, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    2. Tengfei Huo & Hong Ren & Weiguang Cai & Wei Feng & Miaohan Tang & Nan Zhou, 2018. "The total-factor energy productivity growth of China’s construction industry: evidence from the regional level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1593-1616, July.
    3. Zhang, Yue-Jun & Wang, Ao-Dong & Tan, Weiping, 2015. "The impact of China's carbon allowance allocation rules on the product prices and emission reduction behaviors of ETS-covered enterprises," Energy Policy, Elsevier, vol. 86(C), pages 176-185.
    4. Ping Wang & Bangzhu Zhu & Xueping Tao & Rui Xie, 2017. "Measuring regional energy efficiencies in China: a meta-frontier SBM-Undesirable approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(2), pages 793-809, January.
    5. Zhang, Cheng & Wang, Qunwei & Shi, Dan & Li, Pengfei & Cai, Wanhuan, 2016. "Scenario-based potential effects of carbon trading in China: An integrated approach," Applied Energy, Elsevier, vol. 182(C), pages 177-190.
    6. Wei-Hua Qu & Ling Xu & Guo-Hua Qu & Zhi-Jun Yan & Jian-Xiu Wang, 2017. "The impact of energy consumption on environment and public health in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 675-697, June.
    7. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    8. Wen, Wen & Feng, Cuiyang & Zhou, Hao & Zhang, Li & Wu, Xiaohui & Qi, Jianchuan & Yang, Xuechun & Liang, Yuhan, 2021. "Critical provincial transmission sectors for carbon dioxide emissions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
    10. Zhang, Yue-Jun & Hao, Jun-Fang & Song, Juan, 2016. "The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level," Applied Energy, Elsevier, vol. 174(C), pages 213-223.
    11. Tang, Ling & Shi, Jiarui & Bao, Qin, 2016. "Designing an emissions trading scheme for China with a dynamic computable general equilibrium model," Energy Policy, Elsevier, vol. 97(C), pages 507-520.
    12. KİRACI Kasim & BAKIR Mahmut, 2020. "Evaluation Of Airlines Performance Using An Integrated Critic And Codas Methodology: The Case Of Star Alliance Member Airlines," Studies in Business and Economics, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 15(1), pages 83-99, April.
    13. Guowei Zhu & Hongshan Li & Li Zhou, 2018. "Enhancing the development of sharing economy to mitigate the carbon emission: a case study of online ride-hailing development in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 611-633, March.
    14. Huanan Li & Quande Qin, 2017. "Optimal selection of different CCS technologies under CO2 reduction targets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1197-1209, September.
    15. Ning, Yadong & Chen, Kunkun & Zhang, Boya & Ding, Tao & Guo, Fei & Zhang, Ming, 2020. "Energy conservation and emission reduction path selection in China: A simulation based on Bi-Level multi-objective optimization model," Energy Policy, Elsevier, vol. 137(C).
    16. Huang, Hai & Roland-Holst, David & Springer, Cecilia & Lin, Jiang & Cai, Wenjia & Wang, Can, 2019. "Emissions trading systems and social equity: A CGE assessment for China," Applied Energy, Elsevier, vol. 235(C), pages 1254-1265.
    17. Liyin Shen & Yingli Lou & Yali Huang & Jindao Chen, 2018. "A driving–driven perspective on the key carbon emission sectors in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 349-371, August.
    18. Zhang, Yue-Jun & Peng, Yu-Lu & Ma, Chao-Qun & Shen, Bo, 2017. "Can environmental innovation facilitate carbon emissions reduction? Evidence from China," Energy Policy, Elsevier, vol. 100(C), pages 18-28.
    19. Yang, Lin & Li, Fengyu & Zhang, Xian, 2016. "Chinese companies’ awareness and perceptions of the Emissions Trading Scheme (ETS): Evidence from a national survey in China," Energy Policy, Elsevier, vol. 98(C), pages 254-265.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    2. Baochen Yang & Chuanze Liu & Yunpeng Su & Xin Jing, 2017. "The Allocation of Carbon Intensity Reduction Target by 2020 among Industrial Sectors in China," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    3. Zhu, Bangzhu & Jiang, Mingxing & He, Kaijian & Chevallier, Julien & Xie, Rui, 2018. "Allocating CO2 allowances to emitters in China: A multi-objective decision approach," Energy Policy, Elsevier, vol. 121(C), pages 441-451.
    4. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    5. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    6. Kejia Yang & Yalin Lei & Weiming Chen & Lingna Liu, 2018. "Carbon dioxide emission reduction quota allocation study on Chinese provinces based on two-stage Shapley information entropy model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 321-335, March.
    7. Shaofu Du & Jun Qian & Tianzhuo Liu & Li Hu, 2020. "Emission allowance allocation mechanism design: a low-carbon operations perspective," Annals of Operations Research, Springer, vol. 291(1), pages 247-280, August.
    8. Chang, Kai & Zhang, Chao & Chang, Hao, 2016. "Emissions reduction allocation and economic welfare estimation through interregional emissions trading in China: Evidence from efficiency and equity," Energy, Elsevier, vol. 113(C), pages 1125-1135.
    9. Fang, Kai & Zhang, Qifeng & Long, Yin & Yoshida, Yoshikuni & Sun, Lu & Zhang, Haoran & Dou, Yi & Li, Shuai, 2019. "How can China achieve its Intended Nationally Determined Contributions by 2030? A multi-criteria allocation of China’s carbon emission allowance," Applied Energy, Elsevier, vol. 241(C), pages 380-389.
    10. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    11. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
    12. Jiekun Song & Rui Chen & Xiaoping Ma, 2022. "Provincial Allocation of Energy Consumption, Air Pollutant and CO 2 Emission Quotas in China: Based on a Weighted Environment ZSG-DEA Model," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    13. Ni, Jinlan & Wei, Chu & Du, Limin, 2015. "Revealing the political decision toward Chinese carbon abatement: Based on equity and efficiency criteria," Energy Economics, Elsevier, vol. 51(C), pages 609-621.
    14. Yanbin Li & Zhen Li & Min Wu & Feng Zhang & Gejirifu De, 2018. "Regional-Level Allocation of CO 2 Emission Permits in China: Evidence from the Boltzmann Distribution Method," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    15. Jiang, Jingjing & Xie, Dejun & Ye, Bin & Shen, Bo & Chen, Zhanming, 2016. "Research on China’s cap-and-trade carbon emission trading scheme: Overview and outlook," Applied Energy, Elsevier, vol. 178(C), pages 902-917.
    16. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO 2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.
    17. Zhang, Yue-Jun & Wang, Ao-Dong & Tan, Weiping, 2015. "The impact of China's carbon allowance allocation rules on the product prices and emission reduction behaviors of ETS-covered enterprises," Energy Policy, Elsevier, vol. 86(C), pages 176-185.
    18. Yue-Jun Zhang & Jun-Fang Hao, 2017. "Carbon emission quota allocation among China’s industrial sectors based on the equity and efficiency principles," Annals of Operations Research, Springer, vol. 255(1), pages 117-140, August.
    19. Pan, Xunzhang & Teng, Fei & Ha, Yuejiao & Wang, Gehua, 2014. "Equitable Access to Sustainable Development: Based on the comparative study of carbon emission rights allocation schemes," Applied Energy, Elsevier, vol. 130(C), pages 632-640.
    20. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:79:y:2015:i:2:p:921-937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.