IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v66y2014icp630-644.html
   My bibliography  Save this article

Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition

Author

Listed:
  • Yu, Shiwei
  • Wei, Yi-Ming
  • Wang, Ke

Abstract

An approach to determine carbon emission reduction target allocation based on the particle swarm optimization (PSO) algorithm, fuzzy c-means (FCM) clustering algorithm, and Shapley decomposition (PSO–FCM–Shapley) is proposed in this study. The method decomposes total carbon emissions into an interaction result of four components (i.e., emissions from primary, secondary, and tertiary industries, and from residential areas) which composed totally by 13 macro influential factors according to the KAYA identity. Then, 30 provinces in China are clustered into four classes according to the influential factors via the PSO–FCM clustering method. The key factors that determine emission growth in the provinces representing each cluster are investigated by applying Shapley value decomposition. Finally, based on guaranteed survival emissions, the reduction burden is allocated by controlling the key factors that decelerate CO2 emission growth rate according to the present economic development level, energy endowments, living standards, and the emission intensity of each province. A case study of the allocation of CO2 intensity reduction targets in China by 2020 is then conducted via the proposed method. The per capita added value of the secondary industry is the primary factor for the increasing carbon emissions in provinces. Therefore, China should limit the growth rate of its secondary industry to mitigate emission growth. Provinces with high cardinality of emissions have to shoulder the largest reduction, whereas provinces with low emission intensity met the minimum requirements for emission in 2010. Fifteen provinces are expected to exceed the national average decrease rates from 2011 to 2020.

Suggested Citation

  • Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
  • Handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:630-644
    DOI: 10.1016/j.enpol.2013.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513011324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. den Elzen, Michel & Lucas, Paul & Vuuren, Detlef van, 2005. "Abatement costs of post-Kyoto climate regimes," Energy Policy, Elsevier, vol. 33(16), pages 2138-2151, November.
    2. Zhang, Xing-Ping & Cheng, Xiao-Mei, 2009. "Energy consumption, carbon emissions, and economic growth in China," Ecological Economics, Elsevier, vol. 68(10), pages 2706-2712, August.
    3. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    4. Ekholm, Tommi & Soimakallio, Sampo & Moltmann, Sara & Höhne, Niklas & Syri, Sanna & Savolainen, Ilkka, 2010. "Effort sharing in ambitious, global climate change mitigation scenarios," Energy Policy, Elsevier, vol. 38(4), pages 1797-1810, April.
    5. Bohringer, Christoph & Welsch, Heinz, 2004. "Contraction and Convergence of carbon emissions: an intertemporal multi-region CGE analysis," Journal of Policy Modeling, Elsevier, vol. 26(1), pages 21-39, January.
    6. Persson, Tobias A. & Azar, Christian & Lindgren, Kristian, 2006. "Allocation of CO2 emission permits--Economic incentives for emission reductions in developing countries," Energy Policy, Elsevier, vol. 34(14), pages 1889-1899, September.
    7. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    8. Albrecht, Johan & Francois, Delphine & Schoors, Koen, 2002. "A Shapley decomposition of carbon emissions without residuals," Energy Policy, Elsevier, vol. 30(9), pages 727-736, July.
    9. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    10. Mercedes Sastre & Alain Trannoy, 2002. "Shapley inequality decomposition by factor components: Some methodological issues," Journal of Economics, Springer, vol. 9(1), pages 51-89, December.
    11. repec:adr:anecst:y:2011:i:101-102:p:02 is not listed on IDEAS
    12. Shrestha, Ram M. & Timilsina, Govinda R., 1996. "Factors affecting CO2 intensities of power sector in Asia: A Divisia decomposition analysis," Energy Economics, Elsevier, vol. 18(4), pages 283-293, October.
    13. Wang, Ke & Zhang, Xian & Wei, Yi-Ming & Yu, Shiwei, 2013. "Regional allocation of CO2 emissions allowance over provinces in China by 2020," Energy Policy, Elsevier, vol. 54(C), pages 214-229.
    14. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    15. Phylipsen, G J M & Bode, J W & Blok, K & Merkus, H & Metz, B, 1998. "A Triptych sectoral approach to burden differentiation; GHG emissions in the European bubble," Energy Policy, Elsevier, vol. 26(12), pages 929-943, October.
    16. He, Jie, 2010. "What is the role of openness for China's aggregate industrial SO2 emission?: A structural analysis based on the Divisia decomposition method," Ecological Economics, Elsevier, vol. 69(4), pages 868-886, February.
    17. Edwards, T. Huw. & Hutton, John P., 2001. "Allocation of carbon permits within a country: a general equilibrium analysis of the United Kingdom," Energy Economics, Elsevier, vol. 23(4), pages 371-386, July.
    18. Shorrocks, A F, 1982. "Inequality Decomposition by Factor Components," Econometrica, Econometric Society, vol. 50(1), pages 193-211, January.
    19. Michel Elzen & Marcel Berk & Paul Lucas & Patrick Criqui & Alban Kitous, 2006. "Multi-Stage: A Rule-Based Evolution of Future Commitments under the Climate Change Convention," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 6(1), pages 1-28, March.
    20. Yu, Shiwei & Wei, Yi-Ming & Fan, Jingli & Zhang, Xian & Wang, Ke, 2012. "Exploring the regional characteristics of inter-provincial CO2 emissions in China: An improved fuzzy clustering analysis based on particle swarm optimization," Applied Energy, Elsevier, vol. 92(C), pages 552-562.
    21. Heleen Groenenberg & Kornelis Blok & Jeroen van der Sluijs, 2004. "Global Triptych: a bottom-up approach for the differentiation of commitments under the Climate Convention," Climate Policy, Taylor & Francis Journals, vol. 4(2), pages 153-175, June.
    22. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    23. Soytas, Ugur & Sari, Ramazan, 2009. "Energy consumption, economic growth, and carbon emissions: Challenges faced by an EU candidate member," Ecological Economics, Elsevier, vol. 68(6), pages 1667-1675, April.
    24. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    25. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    26. Yi, Wen-Jing & Zou, Le-Le & Guo, Jie & Wang, Kai & Wei, Yi-Ming, 2011. "How can China reach its CO2 intensity reduction targets by 2020? A regional allocation based on equity and development," Energy Policy, Elsevier, vol. 39(5), pages 2407-2415, May.
    27. Alcántara, Vicent & Padilla, Emilio, 2009. "Input-output subsystems and pollution: An application to the service sector and CO2 emissions in Spain," Ecological Economics, Elsevier, vol. 68(3), pages 905-914, January.
    28. Gupta, Sujata & M Bhandari, Preety, 1999. "An effective allocation criterion for CO2 emissions," Energy Policy, Elsevier, vol. 27(12), pages 727-736, November.
    29. Zhang, Ming & Mu, Hailin & Ning, Yadong & Song, Yongchen, 2009. "Decomposition of energy-related CO2 emission over 1991-2006 in China," Ecological Economics, Elsevier, vol. 68(7), pages 2122-2128, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Wang, M., 2016. "Carbon dioxide emissions allocation: A review," Ecological Economics, Elsevier, vol. 125(C), pages 47-59.
    2. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    3. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    4. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.
    5. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    6. van Ruijven, Bas J. & Weitzel, Matthias & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & Peterson, Sonja & Narita, Daiju, 2012. "Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches," Energy Policy, Elsevier, vol. 46(C), pages 116-134.
    7. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "Sharing emission space at an equitable basis: Allocation scheme based on the equal cumulative emission per capita principle," Applied Energy, Elsevier, vol. 113(C), pages 1810-1818.
    8. Fei Wang & Changjian Wang & Yongxian Su & Lixia Jin & Yang Wang & Xinlin Zhang, 2017. "Decomposition Analysis of Carbon Emission Factors from Energy Consumption in Guangdong Province from 1990 to 2014," Sustainability, MDPI, vol. 9(2), pages 1-15, February.
    9. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    10. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2016. "Analysis of the importance of structural change in non-energy intensive industry for prospective modelling: The French case," Energy Policy, Elsevier, vol. 89(C), pages 114-124.
    11. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    12. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    13. Jialing Zou & Weidong Liu & Zhipeng Tang, 2017. "Analysis of Factors Contributing to Changes in Energy Consumption in Tangshan City between 2007 and 2012," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    14. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    15. Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
    16. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO 2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.
    17. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    18. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    19. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    20. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.

    More about this item

    Keywords

    Carbon emission reduction; Targets allocation; Shapley value decomposition;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:630-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.