IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v180y2016icp682-694.html
   My bibliography  Save this article

Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction

Author

Listed:
  • Li, Tianxiang
  • Baležentis, Tomas
  • Makutėnienė, Daiva
  • Streimikiene, Dalia
  • Kriščiukaitienė, Irena

Abstract

Climate change mitigation is a key issue in formulating global environmental policies. Energy production and consumption are the main sources of greenhouse gas (GHG) emissions in Europe. Energy consumption and energy-related GHG emissions from agriculture are an important concern for policymakers, as the agricultural activities should meet food security goals along with proper economic, environmental, and social impacts. Carbon dioxide (CO2) emission is the most significant among energy-related GHG emissions. This paper analyses the main drivers behind energy-related CO2 emission across agricultural sectors of European countries. The analysis is based on aggregate data from the World Input-Output Database. The research explores two main directions. Firstly, Index Decomposition Analysis (IDA), facilitated by the Shapley index, is used to identify the main drivers of CO2 emission. Secondly, the Slack-based Model (SBM) is applied to gauge the environmental efficiency of European agricultural sectors. By applying frontier techniques, we also derive the measures of environmental efficiency and shadow prices, thereby contributing to a discussion on CO2 emission mitigation in agriculture. Therefore, the paper devises an integrated approach towards analysis of CO2 emission based upon advanced decomposition and efficiency analysis models. The research covers eighteen European countries and the applied methodology decomposes contributions to CO2 emission across of regions and factors. Results of IDA suggest that decreasing energy intensity is the main factor behind declines in CO2 emission. According to the SBM, the lowest carbon shadow prices are observed in France, Finland, Sweden, Denmark, the Netherlands, Poland, and Belgium. These countries thus have the highest potential for reduction in CO2 emission. The results imply that measures to increase energy efficiency are a more effective means to reduce CO2 emissions than are changes in the fuel-mix.

Suggested Citation

  • Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
  • Handle: RePEc:eee:appene:v:180:y:2016:i:c:p:682-694
    DOI: 10.1016/j.apenergy.2016.08.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311187
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Marcel P. Timmer & Erik Dietzenbacher & Bart Los & Robert Stehrer & Gaaitzen J. Vries, 2015. "An Illustrated User Guide to the World Input–Output Database: the Case of Global Automotive Production," Review of International Economics, Wiley Blackwell, vol. 23(3), pages 575-605, August.
    3. He, Xiaoping, 2015. "Regional differences in China's CO2 abatement cost," Energy Policy, Elsevier, vol. 80(C), pages 145-152.
    4. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    5. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    6. Ang, B.W. & Su, Bin, 2016. "Carbon emission intensity in electricity production: A global analysis," Energy Policy, Elsevier, vol. 94(C), pages 56-63.
    7. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    8. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    9. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    10. Jin, Jingliang & Zhou, Dequn & Zhou, Peng, 2014. "Measuring environmental performance with stochastic environmental DEA: The case of APEC economies," Economic Modelling, Elsevier, vol. 38(C), pages 80-86.
    11. Kaivo-oja, J. & Luukkanen, J. & Panula-Ontto, J. & Vehmas, J. & Chen, Y. & Mikkonen, S. & Auffermann, B., 2014. "Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA," Energy, Elsevier, vol. 72(C), pages 115-125.
    12. Zhang, Yue-Jun & Wang, Ao-Dong & Da, Ya-Bin, 2014. "Regional allocation of carbon emission quotas in China: Evidence from the Shapley value method," Energy Policy, Elsevier, vol. 74(C), pages 454-464.
    13. Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
    14. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    15. Yu, Shiwei & Wei, Yi-Ming & Wang, Ke, 2014. "Provincial allocation of carbon emission reduction targets in China: An approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, Elsevier, vol. 66(C), pages 630-644.
    16. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    17. M. Murty & Surender Kumar & Kishore Dhavala, 2007. "Measuring environmental efficiency of industry: a case study of thermal power generation in India," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 31-50, September.
    18. Erik Dietzenbacher & Bart Los, 1998. "Structural Decomposition Techniques: Sense and Sensitivity," Economic Systems Research, Taylor & Francis Journals, vol. 10(4), pages 307-324.
    19. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    20. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    21. Chen, Jiandong & Cheng, Shulei & Song, Malin & Wu, Yinyin, 2016. "A carbon emissions reduction index: Integrating the volume and allocation of regional emissions," Applied Energy, Elsevier, vol. 184(C), pages 1154-1164.
    22. Lin, Boqiang & Du, Kerui, 2015. "Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach," Energy Economics, Elsevier, vol. 49(C), pages 550-557.
    23. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl, 2016. "Technical change and pollution abatement costs," European Journal of Operational Research, Elsevier, vol. 248(2), pages 715-724.
    24. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    25. Robaina-Alves, Margarita & Moutinho, Victor, 2014. "Decomposition of energy-related GHG emissions in agriculture over 1995–2008 for European countries," Applied Energy, Elsevier, vol. 114(C), pages 949-957.
    26. B. W. Ang & Ki-Hong Choi, 1997. "Decomposition of Aggregate Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 59-73.
    27. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    28. Albrecht, Johan & Francois, Delphine & Schoors, Koen, 2002. "A Shapley decomposition of carbon emissions without residuals," Energy Policy, Elsevier, vol. 30(9), pages 727-736, July.
    29. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    30. Ang, B. W. & Liu, F. L. & Chew, E. P., 2003. "Perfect decomposition techniques in energy and environmental analysis," Energy Policy, Elsevier, vol. 31(14), pages 1561-1566, November.
    31. Ang, B.W. & Xu, X.Y. & Su, Bin, 2015. "Multi-country comparisons of energy performance: The index decomposition analysis approach," Energy Economics, Elsevier, vol. 47(C), pages 68-76.
    32. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    33. Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
    34. Choi, Ki-Hong & Ang, B.W., 2012. "Attribution of changes in Divisia real energy intensity index — An extension to index decomposition analysis," Energy Economics, Elsevier, vol. 34(1), pages 171-176.
    35. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2014. "Drivers of greenhouse gas emissions in the Baltic States: A structural decomposition analysis," Ecological Economics, Elsevier, vol. 98(C), pages 22-28.
    36. Baležentis, Alvydas & Baležentis, Tomas & Streimikiene, Dalia, 2011. "The energy intensity in Lithuania during 1995–2009: A LMDI approach," Energy Policy, Elsevier, vol. 39(11), pages 7322-7334.
    37. Meyers, Steven & Schmitt, Bastian & Chester-Jones, Mae & Sturm, Barbara, 2016. "Energy efficiency, carbon emissions, and measures towards their improvement in the food and beverage sector for six European countries," Energy, Elsevier, vol. 104(C), pages 266-283.
    38. Brizga, Janis & Feng, Kuishuang & Hubacek, Klaus, 2013. "Drivers of CO2 emissions in the former Soviet Union: A country level IPAT analysis from 1990 to 2010," Energy, Elsevier, vol. 59(C), pages 743-753.
    39. Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
    40. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    41. Kuosmanen, Timo & Kazemi Matin, Reza, 2011. "Duality of weakly disposable technology," Omega, Elsevier, vol. 39(5), pages 504-512, October.
    42. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    43. World Bank, 2010. "Lights out? The Outlook for Energy in Eastern Europe and Central Asia," World Bank Publications, The World Bank, number 2433, November.
    44. World Bank, 2010. "Lights Out? The Outlook for Energy in Eastern Europe and Central Asia," World Bank Other Operational Studies 10190, The World Bank.
    45. repec:eee:ecomod:v:252:y:2013:i:c:p:258-265 is not listed on IDEAS
    46. Bin Su & B. W. Ang, 2012. "Structural Decomposition Analysis Applied To Energy And Emissions: Aggregation Issues," Economic Systems Research, Taylor & Francis Journals, vol. 24(3), pages 299-317, March.
    47. Tao, Xueping & Wang, Ping & Zhu, Bangzhu, 2016. "Provincial green economic efficiency of China: A non-separable input–output SBM approach," Applied Energy, Elsevier, vol. 171(C), pages 58-66.
    48. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    49. Lin, Boqiang & Lei, Xiaojing, 2015. "Carbon emissions reduction in China's food industry," Energy Policy, Elsevier, vol. 86(C), pages 483-492.
    50. Su, Bin & Ang, B.W., 2014. "Attribution of changes in the generalized Fisher index with application to embodied emission studies," Energy, Elsevier, vol. 69(C), pages 778-786.
    51. Hao, Han & Geng, Yong & Hang, Wen, 2016. "GHG emissions from primary aluminum production in China: Regional disparity and policy implications," Applied Energy, Elsevier, vol. 166(C), pages 264-272.
    52. Boussemart, Jean Philippe & Leleu, Hervé & Shen, Zhiyang, 2015. "Environmental growth convergence among Chinese regions," China Economic Review, Elsevier, vol. 34(C), pages 1-18.
    53. Robaina Alves, Margarita & Moutinho, Victor, 2013. "Decomposition analysis and Innovative Accounting Approach for energy-related CO2 (carbon dioxide) emissions intensity over 1996–2009 in Portugal," Energy, Elsevier, vol. 57(C), pages 775-787.
    54. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "Measuring environmental performance under different environmental DEA technologies," Energy Economics, Elsevier, vol. 30(1), pages 1-14, January.
    55. Van Ha, Nguyen & Kant, Shashi & Maclaren, Virginia, 2008. "Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam," Ecological Economics, Elsevier, vol. 65(1), pages 98-110, March.
    56. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    57. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    2. Ming Meng & Yanan Fu & Tianyu Wang & Kaiqiang Jing, 2017. "Analysis of Low-Carbon Economy Efficiency of Chinese Industrial Sectors Based on a RAM Model with Undesirable Outputs," Sustainability, MDPI, Open Access Journal, vol. 9(3), pages 1-18, March.
    3. repec:eee:appene:v:204:y:2017:i:c:p:607-619 is not listed on IDEAS
    4. repec:gam:jeners:v:11:y:2018:i:5:p:1096-:d:143853 is not listed on IDEAS
    5. repec:eee:appene:v:206:y:2017:i:c:p:804-814 is not listed on IDEAS

    More about this item

    Keywords

    Carbon emission; Environmental efficiency; Index Decomposition Analysis; Shadow prices; European Union; Agriculture;

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • Q01 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Sustainable Development
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:180:y:2016:i:c:p:682-694. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.