Are structural change and modernisation leading to convergence in the CO2 economy? Decomposition analysis of China, EU and USA
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2014.05.015
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Lu, Ding, 2001. "Industrial policy and resource allocation: implications on China's participation in globalization," China Economic Review, Elsevier, vol. 11(4), pages 342-360.
- Li, Fangyi & Song, Zhouying & Liu, Weidong, 2014. "China's energy consumption under the global economic crisis: Decomposition and sectoral analysis," Energy Policy, Elsevier, vol. 64(C), pages 193-202.
- Luukkanen, Jyrki & Kaivo-oja, Jari, 2002. "ASEAN tigers and sustainability of energy use--decomposition analysis of energy and CO2 efficiency dynamics," Energy Policy, Elsevier, vol. 30(4), pages 281-292, March.
- Weber, Christopher L., 2009. "Measuring structural change and energy use: Decomposition of the US economy from 1997 to 2002," Energy Policy, Elsevier, vol. 37(4), pages 1561-1570, April.
- Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014.
"Energy intensity developments in 40 major economies: Structural change or technology improvement?,"
Energy Economics, Elsevier, vol. 41(C), pages 47-62.
- Enrica De Cian & Michael Schymura & Elena Verdolini & Sebastian Voigt, 2013. "Energy Intensity Developments in 40 Major Economies: Structural Change or Technology Improvement?," Working Papers 2013.38, Fondazione Eni Enrico Mattei.
- De Cian, Enrica & Schymura, Michael & Verdolini, Elena & Voigt, Sebastian, 2013. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," ZEW Discussion Papers 13-052, ZEW - Leibniz Centre for European Economic Research.
- De Cian, Enrica & Schymura, Michael & Verdolini, Elena & Voigt, Sebastian, 2013. "Energy Intensity Developments in 40 Major Economies: Structural Change or Technology Improvement?," Climate Change and Sustainable Development 150369, Fondazione Eni Enrico Mattei (FEEM).
- Liu, Na & Ang, B.W., 2007. "Factors shaping aggregate energy intensity trend for industry: Energy intensity versus product mix," Energy Economics, Elsevier, vol. 29(4), pages 609-635, July.
- Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
- Luukkanen, J. & Kaivo-oja, J., 2002. "A comparison of Nordic energy and CO2 intensity dynamics in the years 1960–1997," Energy, Elsevier, vol. 27(2), pages 135-150.
- Zhang, Ming & Liu, Xiao & Wang, Wenwen & Zhou, Min, 2013. "Decomposition analysis of CO2 emissions from electricity generation in China," Energy Policy, Elsevier, vol. 52(C), pages 159-165.
- Inglesi-Lotz, R. & Pouris, A., 2012. "Energy efficiency in South Africa: A decomposition exercise," Energy, Elsevier, vol. 42(1), pages 113-120.
- Reitler, W. & Rudolph, M. & Schaefer, H., 1987. "Analysis of the factors influencing energy consumption in industry : A revised method," Energy Economics, Elsevier, vol. 9(3), pages 145-148, July.
- Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
- Boyd, Gale A. & Hanson, Donald A. & Sterner, Thomas, 1988. "Decomposition of changes in energy intensity : A comparison of the Divisia index and other methods," Energy Economics, Elsevier, vol. 10(4), pages 309-312, October.
- Salta, Myrsine & Polatidis, Heracles & Haralambopoulos, Dias, 2009. "Energy use in the Greek manufacturing sector: A methodological framework based on physical indicators with aggregation and decomposition analysis," Energy, Elsevier, vol. 34(1), pages 90-111.
- Zhang, Na & Lior, Noam & Jin, Hongguang, 2011. "The energy situation and its sustainable development strategy in China," Energy, Elsevier, vol. 36(6), pages 3639-3649.
- Claire P. Doblin, 1988. "Declining Energy Intensity in the U.S. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 109-135.
- Sun, J.W., 2000. "An analysis of the difference in CO2 emission intensity between Finland and Sweden," Energy, Elsevier, vol. 25(11), pages 1139-1146.
- Holz, Carsten A., 2008.
"China's Economic Growth 1978-2025: What We Know Today About China's Economic Growth Tomorrow,"
World Development, Elsevier, vol. 36(10), pages 1665-1691, October.
- Carsten A Holz, 2005. "China’s Economic Growth 1978-2025: What We Know Today about China’s Economic Growth Tomorrow," Development and Comp Systems 0512002, University Library of Munich, Germany.
- Carsten A. Holz, 2005. "China’s Economic Growth 1978-2025: What We Know Today about China’s Economic Growth Tomorrow," Development and Comp Systems 0507001, University Library of Munich, Germany.
- Zeng, Lin & Xu, Ming & Liang, Sai & Zeng, Siyu & Zhang, Tianzhu, 2014. "Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis," Energy Policy, Elsevier, vol. 67(C), pages 640-647.
- Hankinson, G. A. & Rhys, J. M. W., 1983. "Electricity consumption, electricity intensity and industrial structure," Energy Economics, Elsevier, vol. 5(3), pages 146-152, July.
- Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
- Ma, Chunbo & Stern, David I., 2008. "China's changing energy intensity trend: A decomposition analysis," Energy Economics, Elsevier, vol. 30(3), pages 1037-1053, May.
- Liddle, Brantley, 2010. "Revisiting world energy intensity convergence for regional differences," Applied Energy, Elsevier, vol. 87(10), pages 3218-3225, October.
- Kaivo-oja, Jari & Luukkanen, Jyrki, 2004. "The European Union balancing between CO2 reduction commitments and growth policies: decomposition analyses," Energy Policy, Elsevier, vol. 32(13), pages 1511-1530, September.
- Ferdinand Vinuya & Ferdinand DiFurio & Erica Sandoval, 2010. "A decomposition analysis of CO2 emissions in the United States," Applied Economics Letters, Taylor & Francis Journals, vol. 17(10), pages 925-931.
- Kim, Kyunam & Kim, Yeonbae, 2012. "International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition," Energy Economics, Elsevier, vol. 34(5), pages 1724-1741.
- Howarth, Richard B. & Schipper, Lee & Duerr, Peter A. & Strøm, Steinar, 1991. "Manufacturing energy use in eight OECD countries : Decomposing the impacts of changes in output, industry structure and energy intensity," Energy Economics, Elsevier, vol. 13(2), pages 135-142, April.
- Jari Kaivo-oja, Jyrki Luukkanen, 2002. "Energy and CO 2 efficiency dynamics in world regions," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 18(2/3/4), pages 274-293.
- Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
- Kahrl, Fredrich & Roland-Holst, David, 2009. "Growth and structural change in China's energy economy," Energy, Elsevier, vol. 34(7), pages 894-903.
- Ang, B. W. & Lee, S. Y., 1994. "Decomposition of industrial energy consumption : Some methodological and application issues," Energy Economics, Elsevier, vol. 16(2), pages 83-92, April.
- Zhang, Ming & Mu, Hailin & Ning, Yadong & Song, Yongchen, 2009. "Decomposition of energy-related CO2 emission over 1991-2006 in China," Ecological Economics, Elsevier, vol. 68(7), pages 2122-2128, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Savona, Maria & Ciarli, Tommaso, 2019.
"Structural Changes and Sustainability. A Selected Review of the Empirical Evidence,"
Ecological Economics, Elsevier, vol. 159(C), pages 244-260.
- Maria Savona & Tommaso Ciarli, 2019. "Structural Changes and Sustainability. A Selected Review of the Empirical Evidence," SPRU Working Paper Series 2019-04, SPRU - Science Policy Research Unit, University of Sussex Business School.
- Cai, Yifei & Chang, Tsangyao & Inglesi-Lotz, Roula, 2018. "Asymmetric persistence in convergence for carbon dioxide emissions based on quantile unit root test with Fourier function," Energy, Elsevier, vol. 161(C), pages 470-481.
- Xiao, Lin & Guan, Yuru & Guo, Yaqin & Xue, Rui & Li, Jiashuo & Shan, Yuli, 2022. "Emission accounting and drivers in 2004 EU accession countries," Applied Energy, Elsevier, vol. 314(C).
- Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
- Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
- Jaruwan Chontanawat, 2019. "Driving Forces of Energy-Related CO 2 Emissions Based on Expanded IPAT Decomposition Analysis: Evidence from ASEAN and Four Selected Countries," Energies, MDPI, vol. 12(4), pages 1-23, February.
- Songqin Zhao & Diyun Peng & Huwei Wen & Huilin Song, 2022. "Does the Digital Economy Promote Upgrading the Industrial Structure of Chinese Cities?," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
- Lima, Fátima & Nunes, Manuel Lopes & Cunha, Jorge & Lucena, André F.P., 2016. "A cross-country assessment of energy-related CO2 emissions: An extended Kaya Index Decomposition Approach," Energy, Elsevier, vol. 115(P2), pages 1361-1374.
- Liobikienė, Genovaitė & Butkus, Mindaugas, 2017. "The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy," Renewable Energy, Elsevier, vol. 106(C), pages 298-309.
- Kaivo-oja, Jari & Roth, Steffen & Westerlund, Leo, 2016. "Futures of robotics. Human work in digital transformation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73(4), pages 176-205.
- Jianguo Zhou & Baoling Jin & Shijuan Du & Ping Zhang, 2018. "Scenario Analysis of Carbon Emissions of Beijing-Tianjin-Hebei," Energies, MDPI, vol. 11(6), pages 1-17, June.
- Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
- Heri Bezić & Davor Mance & Davorin Balaž, 2022. "Panel Evidence from EU Countries on CO 2 Emission Indicators during the Fourth Industrial Revolution," Sustainability, MDPI, vol. 14(19), pages 1-25, October.
- Su, Meirong & Pauleit, Stephan & Yin, Xuemei & Zheng, Ying & Chen, Shaoqing & Xu, Chao, 2016. "Greenhouse gas emission accounting for EU member states from 1991 to 2012," Applied Energy, Elsevier, vol. 184(C), pages 759-768.
- Panula-Ontto, Juha & Luukkanen, Jyrki & Kaivo-oja, Jari & O'Mahony, Tadhg & Vehmas, Jarmo & Valkealahti, Seppo & Björkqvist, Tomas & Korpela, Timo & Järventausta, Pertti & Majanne, Yrjö & Kojo, Matti , 2018. "Cross-impact analysis of Finnish electricity system with increased renewables: Long-run energy policy challenges in balancing supply and consumption," Energy Policy, Elsevier, vol. 118(C), pages 504-513.
- Gideon Nkam Taka & Ta Thi Huong & Izhar Hussain Shah & Hung-Suck Park, 2020. "Determinants of Energy-Based CO 2 Emissions in Ethiopia: A Decomposition Analysis from 1990 to 2017," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
- Du, Kerui & Xie, Chunping & Ouyang, Xiaoling, 2017. "A comparison of carbon dioxide (CO2) emission trends among provinces in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 19-25.
- Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chontanawat, Jaruwan & Wiboonchutikula, Paitoon & Buddhivanich, Atinat, 2014. "Decomposition analysis of the change of energy intensity of manufacturing industries in Thailand," Energy, Elsevier, vol. 77(C), pages 171-182.
- Andreoni, V. & Galmarini, S., 2012. "Decoupling economic growth from carbon dioxide emissions: A decomposition analysis of Italian energy consumption," Energy, Elsevier, vol. 44(1), pages 682-691.
- Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
- Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
- Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
- Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
- Liu, Hong & Wang, Chang & Tian, Meiyu & Wen, Fenghua, 2019. "Analysis of regional difference decomposition of changes in energy consumption in China during 1995–2015," Energy, Elsevier, vol. 171(C), pages 1139-1149.
- Kang, Jidong & Zhao, Tao & Liu, Nan & Zhang, Xin & Xu, Xianshuo & Lin, Tao, 2014. "A multi-sectoral decomposition analysis of city-level greenhouse gas emissions: Case study of Tianjin, China," Energy, Elsevier, vol. 68(C), pages 562-571.
- Xu, X.Y. & Ang, B.W., 2013. "Index decomposition analysis applied to CO2 emission studies," Ecological Economics, Elsevier, vol. 93(C), pages 313-329.
- Fernández González, P. & Landajo, M. & Presno, M.J., 2013. "The Divisia real energy intensity indices: Evolution and attribution of percent changes in 20 European countries from 1995 to 2010," Energy, Elsevier, vol. 58(C), pages 340-349.
- Fernández González, P., 2015. "Exploring energy efficiency in several European countries. An attribution analysis of the Divisia structural change index," Applied Energy, Elsevier, vol. 137(C), pages 364-374.
- Lin, Boqiang & Du, Kerui, 2014. "Decomposing energy intensity change: A combination of index decomposition analysis and production-theoretical decomposition analysis," Applied Energy, Elsevier, vol. 129(C), pages 158-165.
- Lin, Boqiang & Tan, Ruipeng, 2017. "Sustainable development of China's energy intensive industries: From the aspect of carbon dioxide emissions reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 386-394.
- Xin Yang & Chunbo Ma & Anlu Zhang, 2016. "Decomposition of Net CO 2 Emission in the Wuhan Metropolitan Area of Central China," Sustainability, MDPI, vol. 8(8), pages 1-13, August.
- Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
- Md. Afzal Hossain & Jean Engo & Songsheng Chen, 2021. "The main factors behind Cameroon’s CO2 emissions before, during and after the economic crisis of the 1980s," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4500-4520, March.
- Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
- Jimenez, Raul & Mercado, Jorge, 2014.
"Energy intensity: A decomposition and counterfactual exercise for Latin American countries,"
Energy Economics, Elsevier, vol. 42(C), pages 161-171.
- Jimenez Mori, Raul Alberto & Mercado Díaz, Jorge Enrique, 2013. "Energy Intensity: A Decomposition and Counterfactual Exercise for Latin American Countries," IDB Publications (Working Papers) 4594, Inter-American Development Bank.
- Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
- Coccia, Mario, 2010. "Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita," Energy Policy, Elsevier, vol. 38(3), pages 1330-1339, March.
More about this item
Keywords
Decomposition analysis; Advanced sustainability analysis; CO2 emissions;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:72:y:2014:i:c:p:115-125. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.