IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v80y2015icp145-152.html
   My bibliography  Save this article

Regional differences in China's CO2 abatement cost

Author

Listed:
  • He, Xiaoping

Abstract

Under a framework of output distance function with multiple outputs, the study discusses the carbon abatement cost at provincial and regional levels in China, using the shadow price analysis. The findings show that the abatement cost, reflecting the marginal opportunity cost of carbon reduction, varies greatly among the provinces. On average, the abatement cost of the eastern region was much higher than that of the mid-western region during the observed period. The findings provide evidence that the carbon prices in the current ETS pilots have been much lower than desired levels, implying inefficiency of the markets. The wide range of the abatement cost estimates supports that the equi-marginal principle does not hold for the regulations on carbon pollution at regional levels. The regional cost differences indicate the huge potential for China to minimize the total abatement cost with policy instruments that may motive the emissions moving from areas of low abatement cost to where the abatement cost is higher. For a few undeveloped provinces that are environmentally fragile and have high abatement cost, supplementary measures will be needed to reduce the negative impact of carbon cutbacks on the poor to the minimum.

Suggested Citation

  • He, Xiaoping, 2015. "Regional differences in China's CO2 abatement cost," Energy Policy, Elsevier, vol. 80(C), pages 145-152.
  • Handle: RePEc:eee:enepol:v:80:y:2015:i:c:p:145-152
    DOI: 10.1016/j.enpol.2015.01.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421515000658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2015.01.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. CHEN Shiyi, 2009. "Engine or drag: Can high energy consumption and CO2 emission drive the sustainable development of Chinese industry?," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 4(4), pages 548-571, December.
    3. Nordhaus, William D, 1991. "To Slow or Not to Slow: The Economics of the Greenhouse Effect," Economic Journal, Royal Economic Society, vol. 101(407), pages 920-937, July.
    4. John R. Swinton, 1998. "At What Cost do We Reduce Pollution? Shadow Prices of SO2 Emissions," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 63-83.
    5. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    6. Intergovernmental Panel on Climate Change IPCC, 2008. "Intergovernmental Panel on Climate Change: Fourth Assessment Report: Climate Change 2007: Synthesis Report," Working Papers id:1325, eSocialSciences.
    7. Subhash C. Ray & Kankana Mukherjee, 2007. "Efficiency in Managing the Environment and the Opportunity Cost of Pollution Abatement," Working papers 2007-09, University of Connecticut, Department of Economics.
    8. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    9. John Swinton, 2004. "Phase I Completed: An Empirical Assessment of the 1990 CAAA," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 27(3), pages 227-246, March.
    10. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    11. Kwon, Oh Sang & Yun, Won-Cheol, 1999. "Estimation of the marginal abatement costs of airborne pollutants in Korea's power generation sector," Energy Economics, Elsevier, vol. 21(6), pages 545-558, December.
    12. Roger Fouquet (ed.), 2013. "Handbook on Energy and Climate Change," Books, Edward Elgar Publishing, number 14429.
    13. Yongyang Cai & Kenneth L. Judd & Thomas S. Lontzek, 2013. "The Social Cost of Stochastic and Irreversible Climate Change," NBER Working Papers 18704, National Bureau of Economic Research, Inc.
    14. Hope, Chris & Anderson, John & Wenman, Paul, 1993. "Policy analysis of the greenhouse effect : An application of the PAGE model," Energy Policy, Elsevier, vol. 21(3), pages 327-338, March.
    15. Jotzo, Frank & de Boer, Dimitri & Kater, Hugh, 2013. "China Carbon Pricing Survey 2013," Working Papers 249409, Australian National University, Centre for Climate Economics & Policy.
    16. Chris Hope, 2013. "How high should climate change taxes be?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 17, pages 403-414, Edward Elgar Publishing.
    17. John R. Swinton, 2002. "The Potential for Cost Savings in the Sulfur Dioxide Allowance Market: Empirical Evidence from Florida," Land Economics, University of Wisconsin Press, vol. 78(3), pages 390-404.
    18. Lin, C.-Y. Cynthia & Zhang, Wei, 2011. "Market Power and Shadow Prices for Nonrenewable Resources: An Empirical Dynamic Model," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103397, Agricultural and Applied Economics Association.
    19. Pittman, Russell W, 1983. "Multilateral Productivity Comparisons with Undesirable Outputs," Economic Journal, Royal Economic Society, vol. 93(372), pages 883-891, December.
    20. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    2. repec:unt:esctis:tis17 is not listed on IDEAS
    3. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    4. Li, Tianxiang & Baležentis, Tomas & Makutėnienė, Daiva & Streimikiene, Dalia & Kriščiukaitienė, Irena, 2016. "Energy-related CO2 emission in European Union agriculture: Driving forces and possibilities for reduction," Applied Energy, Elsevier, vol. 180(C), pages 682-694.
    5. Wei, Yigang & Liang, Xin & Xu, Liang & Kou, Gang & Chevallier, Julien, 2023. "Trading, storage, or penalty? Uncovering firms' decision-making behavior in the Shanghai emissions trading scheme: Insights from agent-based modeling," Energy Economics, Elsevier, vol. 117(C).
    6. Wu, Rui & Dai, Hancheng & Geng, Yong & Xie, Yang & Masui, Toshihiko & Tian, Xu, 2016. "Achieving China’s INDC through carbon cap-and-trade: Insights from Shanghai," Applied Energy, Elsevier, vol. 184(C), pages 1114-1122.
    7. Alexander Thompson, 2020. "Emerging Powers and Differentiation in Global Climate Institutions," Global Policy, London School of Economics and Political Science, vol. 11(S3), pages 61-72, October.
    8. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    9. Dai, Hancheng & Xie, Yang & Liu, Jingyu & Masui, Toshihiko, 2018. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4121-4131.
    10. repec:unt:esctis:tis19 is not listed on IDEAS
    11. Li, Zhi & Ouyang, Xiaoling & Du, Kerui & Zhao, Yang, 2017. "Does government transparency contribute to improved eco-efficiency performance? An empirical study of 262 cities in China," Energy Policy, Elsevier, vol. 110(C), pages 79-89.
    12. Turcsanyi, Richard Q., 2017. "Central European attitudes towards Chinese energy investments: The cases of Poland, Slovakia, and the Czech Republic," Energy Policy, Elsevier, vol. 101(C), pages 711-722.
    13. Zeng, Shihong & Jiang, Xue & Su, Bin & Nan, Xin, 2018. "China's SO2 shadow prices and environmental technical efficiency at the province level," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 86-102.
    14. repec:unt:esctis:tis18 is not listed on IDEAS
    15. Cui, Qiang & Li, Xin-yi, 2021. "Investigating the Profit Pollution Abatement Costs difference before and after the “Carbon neutral growth from 2020” strategy was proposed," Research in Transportation Economics, Elsevier, vol. 90(C).
    16. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    2. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    3. Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
    4. Roger Fouquet, 2012. "Economics of Energy and Climate Change: Origins, Developments and Growth," Working Papers 2012-08, BC3.
    5. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    6. Rezek, Jon P. & Campbell, Randall C., 2007. "Cost estimates for multiple pollutants: A maximum entropy approach," Energy Economics, Elsevier, vol. 29(3), pages 503-519, May.
    7. Limin Du & Aoife Hanley & Chu Wei, 2015. "Marginal Abatement Costs of Carbon Dioxide Emissions in China: A Parametric Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 191-216, June.
    8. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    9. Soledad Moya & Jordi Perramon & Anselm Constans, 2005. "IFRS Adoption in Europe: The Case of Germany," Working Papers 0501, Departament Empresa, Universitat Autònoma de Barcelona, revised Feb 2005.
    10. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    11. Jon Rezek & Benjamin F. Blair, 2005. "Abatement Cost Heterogeneity In Phase I Electric Utilities," Contemporary Economic Policy, Western Economic Association International, vol. 23(3), pages 324-340, July.
    12. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    13. Chuang Li & Subhash C. Ray, 2021. "Opportunity Cost and Employment Effect of Emission Reduction: An Inter-Industry Comparison of Targeted Pollution Reduction," Working papers 2021-13, University of Connecticut, Department of Economics.
    14. Färe, Rolf & Pasurka, Carl & Vardanyan, Michael, 2017. "On endogenizing direction vectors in parametric directional distance function-based models," European Journal of Operational Research, Elsevier, vol. 262(1), pages 361-369.
    15. repec:npf:wpaper:27 is not listed on IDEAS
    16. Laurence J. Kotlikoff & Andrey V. ZUBAREV & Andrey POLBIN, 2021. "Will the Paris accord accelerate climate change [Ускоряет Ли Парижское Соглашение Изменение Климата?]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 1, pages 8-37, February.
    17. Van Ha, Nguyen & Kant, Shashi & Maclaren, Virginia, 2008. "Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam," Ecological Economics, Elsevier, vol. 65(1), pages 98-110, March.
    18. Kenneth Rødseth & Eirik Romstad, 2014. "Environmental Regulations, Producer Responses, and Secondary Benefits: Carbon Dioxide Reductions Under the Acid Rain Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(1), pages 111-135, September.
    19. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    20. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    21. Surender Kumar & Rakesh Kumar Jain, 2021. "Cost of CO2 emission mitigation and its decomposition: evidence from coal-fired thermal power sector in India," Empirical Economics, Springer, vol. 61(2), pages 693-717, August.

    More about this item

    Keywords

    Shadow price; Carbon abatement; Distance function;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:80:y:2015:i:c:p:145-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.