IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v211y2025ics1364032124009419.html
   My bibliography  Save this article

How has China's urban compactness affected urban CO2 abatement costs?

Author

Listed:
  • Yin, Kai
  • Yao, Xin

Abstract

While many studies highlight the substantial emissions reduction potential of compact urban structures, their economic implications for carbon abatement are often overlooked. Unlike conventional approaches that focus solely on emissions, the concept of the marginal carbon abatement cost offers a more comprehensive framework, addressing both emissions reduction and broader economic impacts. This research applies a convex quantile regression method to account for factors such as low efficiency, noise interference, and overlooked emission reduction potential, which tend to overestimate the marginal carbon abatement cost. The results indicate that the average urban marginal carbon abatement cost in Chinese cities is 222.47 yuan/ton. This research first measure urban compactness and urban marginal carbon abatement cost across Chinese cities, respectively, and then explore the nexus between them. The findings reveal a statistically significant negative relationship, supported by robustness tests. Mechanism analysis suggests that this impact is driven by technological innovation and industrial structure optimization. The reduction in abatement costs is more pronounced in western cities, medium- and small-sized cities, and cities less dependent on resource-based industries. This study provides insights into compact urban development and offers a new perspective on carbon reduction strategies.

Suggested Citation

  • Yin, Kai & Yao, Xin, 2025. "How has China's urban compactness affected urban CO2 abatement costs?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009419
    DOI: 10.1016/j.rser.2024.115215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124009419
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Huaping & Edziah, Bless Kofi & Kporsu, Anthony Kwaku & Sarkodie, Samuel Asumadu & Taghizadeh-Hesary, Farhad, 2021. "Energy efficiency: The role of technological innovation and knowledge spillover," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    2. Xu, Lan & Yang, Jun & Cheng, Jixin & Dong, Hanghang, 2022. "How has China's low-carbon city pilot policy influenced its CO2 abatement costs? Analysis from the perspective of the shadow price," Energy Economics, Elsevier, vol. 115(C).
    3. Yangyang Wang & Yanjun Liu & Guolei Zhou & Zuopeng Ma & Hongri Sun & Hui Fu, 2022. "Coordinated Relationship between Compactness and Land-Use Efficiency in Shrinking Cities: A Case Study of Northeast China," Land, MDPI, vol. 11(3), pages 1-19, March.
    4. Feifei Tan & Zhaohua Lu, 2019. "The impact of urban compactness on urban sustainable development in China: The case of Nanjing," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(3), pages 270-280, May.
    5. Timo Kuosmanen & Andrew Johnson & Antti Saastamoinen, 2015. "Stochastic Nonparametric Approach to Efficiency Analysis: A Unified Framework," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 7, pages 191-244, Springer.
    6. Gudipudi, Ramana & Fluschnik, Till & Ros, Anselmo García Cantú & Walther, Carsten & Kropp, Jürgen P., 2016. "City density and CO2 efficiency," Energy Policy, Elsevier, vol. 91(C), pages 352-361.
    7. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    8. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    9. Guo, Bingnan & Feng, Yu & Lin, Ji, 2023. "Digital inclusive finance and digital transformation of enterprises," Finance Research Letters, Elsevier, vol. 57(C).
    10. Qinliang Tan & Jin Zheng & Yihong Ding & Yimei Zhang, 2020. "Provincial Carbon Emission Quota Allocation Study in China from the Perspective of Abatement Cost and Regional Cooperation," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    11. Ji, D.J. & Zhou, P., 2020. "Marginal abatement cost, air pollution and economic growth: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 86(C).
    12. Quinn, Barry & Gallagher, Ronan & Kuosmanen, Timo, 2023. "Lurking in the shadows: The impact of CO2 emissions target setting on carbon pricing in the Kyoto agreement period," Energy Economics, Elsevier, vol. 118(C).
    13. Gong, Xu & Wang, You & Lin, Boqiang, 2021. "Assessing dynamic China’s energy security: Based on functional data analysis," Energy, Elsevier, vol. 217(C).
    14. Ajay Agrawal & Alberto Galasso & Alexander Oettl, 2017. "Roads and Innovation," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 417-434, July.
    15. Cheng, Lu & Mi, Zhifu & Sudmant, Andrew & Coffman, D'Maris, 2022. "Bigger cities better climate? Results from an analysis of urban areas in China," Energy Economics, Elsevier, vol. 107(C).
    16. He, Weijun & Wang, Bo & Danish, & Wang, Zhaohua, 2018. "Will regional economic integration influence carbon dioxide marginal abatement costs? Evidence from Chinese panel data," Energy Economics, Elsevier, vol. 74(C), pages 263-274.
    17. He, Gang & Kammen, Daniel M., 2016. "Where, when and how much solar is available? A provincial-scale solar resource assessment for China," Renewable Energy, Elsevier, vol. 85(C), pages 74-82.
    18. Lin, Boqiang & Ma, Ruiyang, 2022. "Green technology innovations, urban innovation environment and CO2 emission reduction in China: Fresh evidence from a partially linear functional-coefficient panel model," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    19. Su, Yi & Fan, Qi-ming, 2022. "Renewable energy technology innovation, industrial structure upgrading and green development from the perspective of China's provinces," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    20. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.
    21. Gilles Duranton & Diego Puga, 2001. "Nursery Cities: Urban Diversity, Process Innovation, and the Life Cycle of Products," American Economic Review, American Economic Association, vol. 91(5), pages 1454-1477, December.
    22. Deschenes, Olivier & Wang, Huixia & Wang, Si & Zhang, Peng, 2020. "The effect of air pollution on body weight and obesity: Evidence from China," Journal of Development Economics, Elsevier, vol. 145(C).
    23. Li, Jiaman & Dong, Kangyin & Dong, Xiucheng, 2022. "Green energy as a new determinant of green growth in China: The role of green technological innovation," Energy Economics, Elsevier, vol. 114(C).
    24. Carlino, Gerald A. & Chatterjee, Satyajit & Hunt, Robert M., 2007. "Urban density and the rate of invention," Journal of Urban Economics, Elsevier, vol. 61(3), pages 389-419, May.
    25. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    26. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    27. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    28. Min Su & Miaomiao Guo & Weixin Luan & Feng Pian, 2023. "The Impact of Expressway Development on Industrial Structure in Rugged Terrain: The Case of Sichuan Province, China," Land, MDPI, vol. 12(5), pages 1-16, May.
    29. Jin, Wenwan & Zhu, Shengjun, 2023. "High-speed rail network and regional convergence/divergence in industrial structure," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    30. Zhou, Mengling & Wang, Bing & Chen, Zhongfei, 2020. "Has the anti-corruption campaign decreased air pollution in China?," Energy Economics, Elsevier, vol. 91(C).
    31. Kuosmanen, Timo & Zhou, Xun & Dai, Sheng, 2020. "How much climate policy has cost for OECD countries?," World Development, Elsevier, vol. 125(C).
    32. Cheng, Zhonghua & Li, Lianshui & Liu, Jun, 2018. "Industrial structure, technical progress and carbon intensity in China's provinces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2935-2946.
    33. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    34. Zhao, Jun & Jiang, Qingzhe & Dong, Xiucheng & Dong, Kangyin, 2021. "Assessing energy poverty and its effect on CO2 emissions: The case of China," Energy Economics, Elsevier, vol. 97(C).
    35. Wang, Ailun & Hu, Shuo & Lin, Boqiang, 2021. "Emission abatement cost in China with consideration of technological heterogeneity," Applied Energy, Elsevier, vol. 290(C).
    36. Zhang, Da & Rausch, Sebastian & Karplus, Valerie J. & Zhang, Xiliang, 2013. "Quantifying regional economic impacts of CO2 intensity targets in China," Energy Economics, Elsevier, vol. 40(C), pages 687-701.
    37. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    38. He, Xiaoping, 2015. "Regional differences in China's CO2 abatement cost," Energy Policy, Elsevier, vol. 80(C), pages 145-152.
    39. Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).
    40. Hamidi, Shima & Zandiatashbar, Ahoura & Bonakdar, Ahmad, 2019. "The relationship between regional compactness and regional innovation capacity (RIC): Empirical evidence from a national study," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 394-402.
    41. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    42. Du, Kerui & Lu, Huang & Yu, Kun, 2014. "Sources of the potential CO2 emission reduction in China: A nonparametric metafrontier approach," Applied Energy, Elsevier, vol. 115(C), pages 491-501.
    43. Shima Hamidi & Ahoura Zandiatashbar, 2019. "Does urban form matter for innovation productivity? A national multi-level study of the association between neighbourhood innovation capacity and urban sprawl," Urban Studies, Urban Studies Journal Limited, vol. 56(8), pages 1576-1594, June.
    44. Atakelty Hailu & Robert Chambers, 2012. "A Luenberger soil-quality indicator," Journal of Productivity Analysis, Springer, vol. 38(2), pages 145-154, October.
    45. Li, Xiang & Cheng, Zhonghua, 2022. "Does high-speed rail improve urban carbon emission efficiency in China?," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    46. Assi, Ala Fathi & Zhakanova Isiksal, Aliya & Tursoy, Turgut, 2021. "Renewable energy consumption, financial development, environmental pollution, and innovations in the ASEAN + 3 group: Evidence from (P-ARDL) model," Renewable Energy, Elsevier, vol. 165(P1), pages 689-700.
    47. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    48. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    49. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    50. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    51. Ma, Dan & Zhu, Yanjin, 2024. "The impact of economic uncertainty on carbon emission: Evidence from China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    52. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the marginal abatement cost curve of CO₂ emissions in China: Provincial panel data analysis," Kiel Working Papers 1985, Kiel Institute for the World Economy (IfW Kiel).
    53. Carl Gaigné & Stéphane Riou & Jacques-François Thisse, 2012. "Are Compact Cities Environmentally (and Socially) Desirable ?," Cahiers de recherche CREATE 2012-4, CREATE.
    54. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    55. Kuosmanen, Timo & Zhou, Xun, 2021. "Shadow prices and marginal abatement costs: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 666-675.
    56. Zhou, Di & Huang, Qing & Chong, Zhaohui, 2022. "Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China," Land Use Policy, Elsevier, vol. 121(C).
    57. Zhang, Xiaoling & Wang, Yue, 2017. "How to reduce household carbon emissions: A review of experience and policy design considerations," Energy Policy, Elsevier, vol. 102(C), pages 116-124.
    58. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    59. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    60. Yanru Li & Guanglin Sun & Qiang Gao & Changming Cheng, 2023. "Digital Financial Inclusion, Financial Efficiency and Green Innovation," Sustainability, MDPI, vol. 15(3), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Juan & Li, Ziming & Wang, Yanan, 2024. "How does China's energy-consumption trading policy affect the carbon abatement costs? An analysis based on spatial difference-in-differences method," Energy, Elsevier, vol. 294(C).
    2. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    3. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    4. Xu, Lan & Yang, Jun & Cheng, Jixin & Dong, Hanghang, 2022. "How has China's low-carbon city pilot policy influenced its CO2 abatement costs? Analysis from the perspective of the shadow price," Energy Economics, Elsevier, vol. 115(C).
    5. Bei Gao & Zuoren Sun, 2023. "Marginal CO 2 and SO 2 Abatement Costs and Determinants of Coal-Fired Power Plants in China: Considering a Two-Stage Production System with Different Emission Reduction Approaches," Energies, MDPI, vol. 16(8), pages 1-26, April.
    6. Yunfei An & Xunpeng Shi & Qunwei Wang & Jian Yu & Dequn Zhou & Xiaoyong Zhou, 2023. "China's manufacturing firms' willingness to pay for carbon abatement: A cost perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5477-5486, December.
    7. Shirong Zhao & Guangshun Qiao, 2022. "The shadow prices of CO2, SO2 and NOx for U.S. coal power industry 2010–2017: a convex quantile regression method," Journal of Productivity Analysis, Springer, vol. 57(3), pages 243-253, June.
    8. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    9. Dai, Sheng & Kuosmanen, Natalia & Kuosmanen, Timo & Liesiö, Juuso, 2025. "Optimal resource allocation: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 324(1), pages 221-230.
    10. Kuosmanen, Timo & Zhou, Xun, 2021. "Shadow prices and marginal abatement costs: Convex quantile regression approach," European Journal of Operational Research, Elsevier, vol. 289(2), pages 666-675.
    11. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    12. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    13. Huiming Xie & Limin Du & Chu Wei, 2024. "Decarbonizing China’s cities with the lowest cost," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20507-20530, August.
    14. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    15. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    16. Wu, F. & Wang, S.Y. & Zhou, P., 2023. "Marginal abatement cost of carbon dioxide emissions: The role of abatement options," European Journal of Operational Research, Elsevier, vol. 310(2), pages 891-901.
    17. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    18. Xian, Yujiao & Yu, Dan & Wang, Ke & Yu, Jian & Huang, Zhimin, 2022. "Capturing the least costly measure of CO2 emission abatement: Evidence from the iron and steel industry in China," Energy Economics, Elsevier, vol. 106(C).
    19. Hai-Ying Gu & Qing-Mi Hu & Tian-Qiong Wang, 2019. "Payment for Rice Growers to Reduce Using N Fertilizer in the GHG Mitigation Program Driven by the Government: Evidence from Shanghai," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    20. Dai, Sheng, 2023. "Variable selection in convex quantile regression: L1-norm or L0-norm regularization?," European Journal of Operational Research, Elsevier, vol. 305(1), pages 338-355.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:211:y:2025:i:c:s1364032124009419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.