IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v91y2016icp352-361.html

City density and CO2 efficiency

Author

Listed:
  • Gudipudi, Ramana
  • Fluschnik, Till
  • Ros, Anselmo García Cantú
  • Walther, Carsten
  • Kropp, Jürgen P.

Abstract

Cities play a vital role in the global climate change mitigation agenda. City population density is one of the key factors that influence urban energy consumption and the subsequent GHG emissions. However, previous research on the relationship between population density and GHG emissions led to contradictory results due to urban/rural definition conundrum and the varying methodologies for estimating GHG emissions. This work addresses these ambiguities by employing the City Clustering Algorithm (CCA) and utilizing the gridded CO2 emissions data. Our results, derived from the analysis of all inhabited areas in the US, show a sub-linear relationship between population density and the total emissions (i.e. the sum of on-road and building emissions) on a per capita basis. Accordingly, we find that doubling the population density would entail a reduction in the total CO2 emissions in buildings and on-road sectors typically by at least 42%. Moreover, we find that population density exerts a higher influence on on-road emissions than buildings emissions. From an energy consumption point of view, our results suggest that on-going urban sprawl will lead to an increase in on-road energy consumption in cities and therefore stresses the importance of developing adequate local policy measures to limit urban sprawl.

Suggested Citation

  • Gudipudi, Ramana & Fluschnik, Till & Ros, Anselmo García Cantú & Walther, Carsten & Kropp, Jürgen P., 2016. "City density and CO2 efficiency," Energy Policy, Elsevier, vol. 91(C), pages 352-361.
  • Handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:352-361
    DOI: 10.1016/j.enpol.2016.01.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516300167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.01.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Diana Reckien & Maren Ewald & Ottmar Edenhofer & Matthias K. B. Liideke, 2007. "What Parameters Influence the Spatial Variations in CO2 Emissions from Road Traffic in Berlin? Implications for Urban Planning to Reduce Anthropogenic CO2 Emissions," Urban Studies, Urban Studies Journal Limited, vol. 44(2), pages 339-355, February.
    2. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    3. Lariviere, Isabelle & Lafrance, Gaetan, 1999. "Modelling the electricity consumption of cities: effect of urban density," Energy Economics, Elsevier, vol. 21(1), pages 53-66, February.
    4. Parshall, Lily & Gurney, Kevin & Hammer, Stephen A. & Mendoza, Daniel & Zhou, Yuyu & Geethakumar, Sarath, 2010. "Modeling energy consumption and CO2 emissions at the urban scale: Methodological challenges and insights from the United States," Energy Policy, Elsevier, vol. 38(9), pages 4765-4782, September.
    5. Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
    6. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    7. Mindali, Orit & Raveh, Adi & Salomon, Ilan, 2004. "Urban density and energy consumption: a new look at old statistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 143-162, February.
    8. Kenworthy, Jeffrey R. & Laube, Felix B., 1999. "Patterns of automobile dependence in cities: an international overview of key physical and economic dimensions with some implications for urban policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(7-8), pages 691-723.
    9. Yunjing Wang & Yoshitsugu Hayashi & Jin Chen & Qiang Li, 2014. "Changing Urban Form and Transport CO 2 Emissions: An Empirical Analysis of Beijing, China," Sustainability, MDPI, vol. 6(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    2. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    3. Proque, Andressa Lemes & dos Santos, Gervásio Ferreira & Betarelli Junior, Admir Antonio & Larson, William D., 2020. "Effects of land use and transportation policies on the spatial distribution of urban energy consumption in Brazil," Energy Economics, Elsevier, vol. 90(C).
    4. Chao Liu & Sen Huang & Peng Xu & Zhong-ren Peng, 2018. "Exploring an integrated urban carbon dioxide (CO2) emission model and mitigation plan for new cities," Environment and Planning B, , vol. 45(5), pages 821-841, September.
    5. Rui Wang & Quan Yuan, 2017. "Are denser cities greener? Evidence from China, 2000–2010," Natural Resources Forum, Blackwell Publishing, vol. 41(3), pages 179-189, August.
    6. Clark, Thomas A., 2013. "Metropolitan density, energy efficiency and carbon emissions: Multi-attribute tradeoffs and their policy implications," Energy Policy, Elsevier, vol. 53(C), pages 413-428.
    7. Yahui Guang & Yongbin Huang, 2022. "Urban Form and Household Energy Consumption: Evidence from China Panel Data," Land, MDPI, vol. 11(8), pages 1-15, August.
    8. Estiri, Hossein, 2014. "Building and household X-factors and energy consumption at the residential sector," Energy Economics, Elsevier, vol. 43(C), pages 178-184.
    9. Qing Su, 2017. "Travel Demand Management Policy Instruments, Urban Spatial Characteristics, and Household Greenhouse Gas Emissions from Travel in the US Urban Areas," International Journal of Energy Economics and Policy, Econjournals, vol. 7(3), pages 157-166.
    10. Lohwasser, Johannes & Bolognesi, Thomas & Schaffer, Axel, 2025. "Impacts of population, affluence and urbanization on local air pollution and land transformation – A regional STIRPAT analysis for German districts," Ecological Economics, Elsevier, vol. 227(C).
    11. Bereitschaft, Bradley, 2020. "Gentrification and the evolution of commuting behavior within America's urban cores, 2000–2015," Journal of Transport Geography, Elsevier, vol. 82(C).
    12. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    13. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    14. Safirova, Elena A. & Houde, Sébastien & Harrington, Winston, 2007. "Spatial Development and Energy Consumption," RFF Working Paper Series dp-07-51, Resources for the Future.
    15. Liu, Yaobin, 2009. "Exploring the relationship between urbanization and energy consumption in China using ARDL (autoregressive distributed lag) and FDM (factor decomposition model)," Energy, Elsevier, vol. 34(11), pages 1846-1854.
    16. Cai, Bofeng & Liu, Helin & Zhang, Xiaoling & Pan, Haozhi & Zhao, Mengxue & Zheng, Tianming & Nie, Jingxin & Du, Mengbing & Dhakal, Shobhakar, 2022. "High-resolution accounting of urban emissions in China," Applied Energy, Elsevier, vol. 325(C).
    17. Ghosh, Sajal & Kanjilal, Kakali, 2014. "Long-term equilibrium relationship between urbanization, energy consumption and economic activity: Empirical evidence from India," Energy, Elsevier, vol. 66(C), pages 324-331.
    18. Gago, E.J. & Roldan, J. & Pacheco-Torres, R. & Ordóñez, J., 2013. "The city and urban heat islands: A review of strategies to mitigate adverse effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 749-758.
    19. Wanglin Yan & Rob Roggema, 2019. "Developing a Design-Led Approach for the Food-Energy-Water Nexus in Cities," Urban Planning, Cogitatio Press, vol. 4(1), pages 123-138.
    20. Wanglin Yan & Rob Roggema, 2019. "Developing a Design-Led Approach for the Food-Energy-Water Nexus in Cities," Urban Planning, Cogitatio Press, vol. 4(1), pages 123-138.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:352-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.