IDEAS home Printed from https://ideas.repec.org/a/bla/bstrat/v32y2023i8p5477-5486.html
   My bibliography  Save this article

China's manufacturing firms' willingness to pay for carbon abatement: A cost perspective

Author

Listed:
  • Yunfei An
  • Xunpeng Shi
  • Qunwei Wang
  • Jian Yu
  • Dequn Zhou
  • Xiaoyong Zhou

Abstract

The existing studies of emissions reduction focus mainly on the technical potential and abatement costs while overlooking firms' willingness to pay (WTP) for emissions reduction. Yet WTP is a key parameter in a firm's decision to carry out emissions reduction while maximizing its profits. This paper estimates China's manufacturing industry (CMI) firms' maximum WTP for carbon abatement—defined as the cumulative product between the marginal abatement cost and corresponding abatement potential—using a large sample from a data envelopment analysis model. The results show that (a) the maximum WTP is significantly constrained by an isocost carbon abatement curve at RMB 8.65 million for the representative CMI firm; (b) the representative firms' WTP for carbon abatement varies among the sub‐sectors; and (c) profitability and production scales both positively affect firms' WTP for carbon abatement in all of CMI sub‐sectors, while innovation investment has a negative effect. The results suggest that the cost of carbon reduction technology for CMI firms should be below RMB 8.65 million for a representative CMI firm. The government should formulate subsidies or tax relief policies to help firms reduce their abatement costs. Further, the division of tasks in different sub‐sectors, between carbon emissions reduction on the one hand, and ongoing innovation on the other, should be clearly distinguished by policy bias to promote the transformation of industrial structure.

Suggested Citation

  • Yunfei An & Xunpeng Shi & Qunwei Wang & Jian Yu & Dequn Zhou & Xiaoyong Zhou, 2023. "China's manufacturing firms' willingness to pay for carbon abatement: A cost perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 5477-5486, December.
  • Handle: RePEc:bla:bstrat:v:32:y:2023:i:8:p:5477-5486
    DOI: 10.1002/bse.3431
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/bse.3431
    Download Restriction: no

    File URL: https://libkey.io/10.1002/bse.3431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonah Busch & Jens Engelmann & Susan C. Cook-Patton & Bronson W. Griscom & Timm Kroeger & Hugh Possingham & Priya Shyamsundar, 2019. "Potential for low-cost carbon dioxide removal through tropical reforestation," Nature Climate Change, Nature, vol. 9(6), pages 463-466, June.
    2. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    3. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    4. Zhang, Cheng & Zhou, Bo & Tian, Xuan, 2022. "Political connections and green innovation: The role of a corporate entrepreneurship strategy in state-owned enterprises," Journal of Business Research, Elsevier, vol. 146(C), pages 375-384.
    5. Karin Sjöstrand & Andreas Lindhe & Tore Söderqvist & Peter Dahlqvist & Lars Rosén, 2019. "Marginal Abatement Cost Curves for Water Scarcity Mitigation under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(12), pages 4335-4349, September.
    6. Tan, Xianchun & Lai, Haiping & Gu, Baihe & Zeng, Yuan & Li, Hui, 2018. "Carbon emission and abatement potential outlook in China's building sector through 2050," Energy Policy, Elsevier, vol. 118(C), pages 429-439.
    7. Dai, Sheng & Zhou, Xun & Kuosmanen, Timo, 2020. "Forward-looking assessment of the GHG abatement cost: Application to China," Energy Economics, Elsevier, vol. 88(C).
    8. Hong-Dian Jiang & Mei-Mei Xue & Kang-Yin Dong & Qiao-Mei Liang, 2022. "How will natural gas market reforms affect carbon marginal abatement costs? Evidence from China," Economic Systems Research, Taylor & Francis Journals, vol. 34(2), pages 129-150, April.
    9. Parry, Ian W. H. & Williams III, Roberton C., 1999. "A second-best evaluation of eight policy instruments to reduce carbon emissions," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 347-373, August.
    10. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    11. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    12. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    13. Blyth, William & Bunn, Derek & Kettunen, Janne & Wilson, Tom, 2009. "Policy interactions, risk and price formation in carbon markets," Energy Policy, Elsevier, vol. 37(12), pages 5192-5207, December.
    14. An, Yunfei & Zhou, Dequn & Wang, Qunwei & Shi, Xunpeng & Taghizadeh-Hesary, Farhad, 2022. "Mitigating size bias for carbon pricing in small Asia-Pacific countries: Increasing block carbon tax," Energy Policy, Elsevier, vol. 161(C).
    15. Wang, Keying & Wu, Meng & Sun, Yongping & Shi, Xunpeng & Sun, Ao & Zhang, Ping, 2019. "Resource abundance, industrial structure, and regional carbon emissions efficiency in China," Resources Policy, Elsevier, vol. 60(C), pages 203-214.
    16. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.
    17. Lin, Boqiang & Yang, Lisha, 2013. "The potential estimation and factor analysis of China′s energy conservation on thermal power industry," Energy Policy, Elsevier, vol. 62(C), pages 354-362.
    18. Rong He & Le Luo & Abul Shamsuddin & Qingliang Tang, 2022. "The Value Relevance of Corporate Investment in Carbon Abatement: The Influence of National Climate Policy," European Accounting Review, Taylor & Francis Journals, vol. 31(5), pages 1233-1261, October.
    19. Zhao, Yibing & Wang, Can & Sun, Yuwei & Liu, Xianbing, 2018. "Factors influencing companies' willingness to pay for carbon emissions: Emission trading schemes in China," Energy Economics, Elsevier, vol. 75(C), pages 357-367.
    20. Ji, D.J. & Zhou, P., 2020. "Marginal abatement cost, air pollution and economic growth: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 86(C).
    21. Yu, Shiwei & Agbemabiese, Lawrence & Zhang, Junjie, 2016. "Estimating the carbon abatement potential of economic sectors in China," Applied Energy, Elsevier, vol. 165(C), pages 107-118.
    22. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    23. McKitrick, Ross, 1999. "A Derivation of the Marginal Abatement Cost Curve," Journal of Environmental Economics and Management, Elsevier, vol. 37(3), pages 306-314, May.
    24. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
    25. Liu, Xianbing & Niu, Dongjie & Bao, Cunkuan & Suk, Sunhee & Sudo, Kinichi, 2013. "Affordability of energy cost increases for companies due to market-based climate policies: A survey in Taicang, China," Applied Energy, Elsevier, vol. 102(C), pages 1464-1476.
    26. Zhang, Kun & Yao, Yun-Fei & Liang, Qiao-Mei & Saren, Gaowa, 2021. "How should China prioritize the deregulation of electricity prices in the context of carbon pricing? A computable general equilibrium analysis," Energy Economics, Elsevier, vol. 96(C).
    27. Krozer, Yoram, 2013. "Cost and benefit of renewable energy in the European Union," Renewable Energy, Elsevier, vol. 50(C), pages 68-73.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    2. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    3. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    4. Zhang, Weijie & Zhang, Ning & Yu, Yanni, 2019. "Carbon mitigation effects and potential cost savings from carbon emissions trading in China's regional industry," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 1-11.
    5. Wu, F. & Wang, S.Y. & Zhou, P., 2023. "Marginal abatement cost of carbon dioxide emissions: The role of abatement options," European Journal of Operational Research, Elsevier, vol. 310(2), pages 891-901.
    6. Zhou, Yi & Zhou, Wenji & Wei, Chu, 2023. "Environmental performance of the Chinese cement enterprise: An empirical analysis using a text-based directional vector," Energy Economics, Elsevier, vol. 125(C).
    7. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    8. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    9. Nakaishi, Tomoaki, 2021. "Developing effective CO2 and SO2 mitigation strategy based on marginal abatement costs of coal-fired power plants in China," Applied Energy, Elsevier, vol. 294(C).
    10. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    11. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    12. Bowen Xiao & Dongxiao Niu & Han Wu & Haichao Wang, 2017. "Marginal Abatement Cost of CO 2 in China Based on Directional Distance Function: An Industry Perspective," Sustainability, MDPI, vol. 9(1), pages 1-19, January.
    13. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    14. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    15. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    16. Bei Gao & Zuoren Sun, 2023. "Marginal CO 2 and SO 2 Abatement Costs and Determinants of Coal-Fired Power Plants in China: Considering a Two-Stage Production System with Different Emission Reduction Approaches," Energies, MDPI, vol. 16(8), pages 1-26, April.
    17. He, Weijun & Yang, Yi & Wang, Zhaohua & Zhu, Joe, 2018. "Estimation and allocation of cost savings from collaborative CO2 abatement in China," Energy Economics, Elsevier, vol. 72(C), pages 62-74.
    18. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    19. Hai-Ying Gu & Qing-Mi Hu & Tian-Qiong Wang, 2019. "Payment for Rice Growers to Reduce Using N Fertilizer in the GHG Mitigation Program Driven by the Government: Evidence from Shanghai," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    20. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:bstrat:v:32:y:2023:i:8:p:5477-5486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-0836 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.