IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v105y2017icp246-255.html
   My bibliography  Save this article

Energy efficiency and marginal carbon dioxide emission abatement cost in urban China

Author

Listed:
  • Wang, Jian
  • Lv, Kangjuan
  • Bian, Yiwen
  • Cheng, Yu

Abstract

Energy efficiency improvement and carbon emission reduction are two important ways to mitigate energy consumptions and global warming. This paper aims to examine energy efficiency and carbon dioxide (CO2) emissions abatement costs of city urban areas in China. To this end, an improved slacks-based measure approach is introduced, which considers the linkage between desirable and undesirable outputs. Then, measures of energy efficiency, CO2 emission abatement cost and comprehensive state index of CO2 emissions abatement cost and CO2 emissions reduction potential are defined. The proposed model is then applied to the dataset of 285 cities in China during 2008–2012. The results show that most city urban areas in China have relatively low energy efficiencies. Surprisingly, there are gradually narrowing gaps regarding mean energy efficiencies between areas during 2008–2012. Nevertheless, there are great disparities in energy efficiencies between cities within a typical area, and even a provincial region. It is found that CO2 emissions abatement cost in urban China exhibits an increasing trend during the study period. Also, significantly geographic disparities in abatement costs between areas, regions and cites are found. Specifically, energy efficiency has significantly positive correlation with the comprehensive state index in China. Some important findings and useful policy implications are achieved.

Suggested Citation

  • Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
  • Handle: RePEc:eee:enepol:v:105:y:2017:i:c:p:246-255
    DOI: 10.1016/j.enpol.2017.02.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517301143
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kangjuan Lv & Anyu Yu & Yiwen Bian, 2017. "Regional energy efficiency and its determinants in China during 2001–2010: a slacks-based measure and spatial econometric analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 65-81, February.
    2. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    3. Zhou, P. & Ang, B.W., 2008. "Linear programming models for measuring economy-wide energy efficiency performance," Energy Policy, Elsevier, vol. 36(8), pages 2901-2906, August.
    4. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    5. Fare, Rolf & Grosskopf, Shawna, 2004. "Modeling undesirable factors in efficiency evaluation: Comment," European Journal of Operational Research, Elsevier, vol. 157(1), pages 242-245, August.
    6. Wang, Ke & Wei, Yi-Ming, 2014. "China’s regional industrial energy efficiency and carbon emissions abatement costs," Applied Energy, Elsevier, vol. 130(C), pages 617-631.
    7. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    8. Wu, F. & Fan, L.W. & Zhou, P. & Zhou, D.Q., 2012. "Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis," Energy Policy, Elsevier, vol. 49(C), pages 164-172.
    9. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    10. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    11. Bian, Yiwen & He, Ping & Xu, Hao, 2013. "Estimation of potential energy saving and carbon dioxide emission reduction in China based on an extended non-radial DEA approach," Energy Policy, Elsevier, vol. 63(C), pages 962-971.
    12. Al-Mansour, Fouad, 2011. "Energy efficiency trends and policy in Slovenia," Energy, Elsevier, vol. 36(4), pages 1868-1877.
    13. Jotzo, Frank & de Boer, Dimitri & Kater, Hugh, 2013. "China Carbon Pricing Survey 2013," Working Papers 249409, Australian National University, Centre for Climate Economics & Policy.
    14. Van Ha, Nguyen & Kant, Shashi & Maclaren, Virginia, 2008. "Shadow prices of environmental outputs and production efficiency of household-level paper recycling units in Vietnam," Ecological Economics, Elsevier, vol. 65(1), pages 98-110, March.
    15. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    16. He, Xiaoping, 2015. "Regional differences in China's CO2 abatement cost," Energy Policy, Elsevier, vol. 80(C), pages 145-152.
    17. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    18. Li, Ke & Lin, Boqiang, 2015. "The improvement gap in energy intensity: Analysis of China's thirty provincial regions using the improved DEA (data envelopment analysis) model," Energy, Elsevier, vol. 84(C), pages 589-599.
    19. Kaneko, Shinji & Fujii, Hidemichi & Sawazu, Naoya & Fujikura, Ryo, 2010. "Financial allocation strategy for the regional pollution abatement cost of reducing sulfur dioxide emissions in the thermal power sector in China," Energy Policy, Elsevier, vol. 38(5), pages 2131-2141, May.
    20. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    21. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    22. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    23. Honma, Satoshi & Hu, Jin-Li, 2014. "A panel data parametric frontier technique for measuring total-factor energy efficiency: An application to Japanese regions," Energy, Elsevier, vol. 78(C), pages 732-739.
    24. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    25. Wang, Qunwei & Zhou, Peng & Zhou, Dequn, 2012. "Efficiency measurement with carbon dioxide emissions: The case of China," Applied Energy, Elsevier, vol. 90(1), pages 161-166.
    26. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    27. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qinliang Tan & Jin Zheng & Yihong Ding & Yimei Zhang, 2020. "Provincial Carbon Emission Quota Allocation Study in China from the Perspective of Abatement Cost and Regional Cooperation," Sustainability, MDPI, Open Access Journal, vol. 12(20), pages 1-1, October.
    2. Li, Jingjing & Jiao, Jianling & Tang, Yunshu, 2019. "An evolutionary analysis on the effect of government policies on electric vehicle diffusion in complex network," Energy Policy, Elsevier, vol. 129(C), pages 1-12.
    3. Jebali, Eya & Essid, Hédi & Khraief, Naceur, 2017. "The analysis of energy efficiency of the Mediterranean countries: A two-stage double bootstrap DEA approach," Energy, Elsevier, vol. 134(C), pages 991-1000.
    4. Zhang, Yue-Jun & Liang, Ting & Jin, Yan-Lin & Shen, Bo, 2020. "The impact of carbon trading on economic output and carbon emissions reduction in China’s industrial sectors," Applied Energy, Elsevier, vol. 260(C).
    5. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    6. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    7. Tomas Baležentis & Dalia Štreimikienė, 2019. "Sustainability in the Electricity Sector through Advanced Technologies: Energy Mix Transition and Smart Grid Technology in China," Energies, MDPI, Open Access Journal, vol. 12(6), pages 1-1, March.
    8. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    9. Wang, Feng & Sun, Xiaoyu & Reiner, David M. & Wu, Min, 2020. "Changing trends of the elasticity of China's carbon emission intensity to industry structure and energy efficiency," Energy Economics, Elsevier, vol. 86(C).
    10. Zhu, Lin & Wang, Yong & Shang, Peipei & Qi, Lin & Yang, Guangchun & Wang, Ying, 2019. "Improvement path, the improvement potential and the dynamic evolution of regional energy efficiency in China: Based on an improved nonradial multidirectional efficiency analysis," Energy Policy, Elsevier, vol. 133(C).
    11. Tianbo Tang & Jianxin You & Hui Sun & Hao Zhang, 2019. "Transportation Efficiency Evaluation Considering the Environmental Impact for China’s Freight Sector: A Parallel Data Envelopment Analysis," Sustainability, MDPI, Open Access Journal, vol. 11(18), pages 1-1, September.
    12. Kuhn, Lena & Balezentis, Tomas & Hou, Lingling & Wang, Dan, 2020. "Technical and environmental efficiency of livestock farms in China: A slacks-based DEA approach," China Economic Review, Elsevier, vol. 62(C).
    13. Qi, Xiaoyan & Guo, Pibin & Guo, Yanshan & Liu, Xiuli & Zhou, Xijun, 2020. "Understanding energy efficiency and its drivers: An empirical analysis of China’s 14 coal intensive industries," Energy, Elsevier, vol. 190(C).
    14. Liu, Haomin & Zhang, Zaixu & Zhang, Tao & Wang, Liyang, 2020. "Revisiting China’s provincial energy efficiency and its influencing factors," Energy, Elsevier, vol. 208(C).
    15. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Regional heterogeneity of China's energy efficiency in “new normal”: A meta-frontier Super-SBM analysis," Energy Policy, Elsevier, vol. 134(C).
    16. Hu, Yucai & Ren, Shenggang & Wang, Yangjie & Chen, Xiaohong, 2020. "Can carbon emission trading scheme achieve energy conservation and emission reduction? Evidence from the industrial sector in China," Energy Economics, Elsevier, vol. 85(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:105:y:2017:i:c:p:246-255. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.